1,481 research outputs found
Magnetic field effects on the density of states of orthorhombic superconductors
The quasiparticle density of states in a two-dimensional d-wave
superconductor depends on the orientation of the in-plane external magnetic
field H. This is because. in the region of the gap nodes, the Doppler shift due
to the circulating supercurrents around a vortex depend on the direction of H.
For a tetragonal system the induced pattern is four-fold symmetric and, at zero
energy, the density of states exhibits minima along the node directions. But
YBa_2C_3O_{6.95} is orthorhombic because of the chains and the pattern becomes
two-fold symmetric with the position of the minima occuring when H is oriented
along the Fermi velocity at a node on the Fermi surface. The effect of impurity
scattering in the Born and unitary limit is discussed.Comment: 24 pages, 11 Figure
The Transit Light Curve Project. VI. Three Transits of the Exoplanet TrES-2
Of the nearby transiting exoplanets that are amenable to detailed study,
TrES-2 is both the most massive and has the largest impact parameter. We
present z-band photometry of three transits of TrES-2. We improve upon the
estimates of the planetary, stellar, and orbital parameters, in conjunction
with the spectroscopic analysis of the host star by Sozzetti and co-workers. We
find the planetary radius to be 1.222 +/- 0.038 R_Jup and the stellar radius to
be 1.003 +/- 0.027 R_Sun. The quoted uncertainties include the systematic error
due to the uncertainty in the stellar mass (0.980 +/- 0.062 M_Sun). The timings
of the transits have an accuracy of 25s and are consistent with a uniform
period, thus providing a baseline for future observations with the NASA Kepler
satellite, whose field of view will include TrES-2.Comment: 15 pages, including 2 figures, accepted Ap
Spontaneous Flux and Magnetic Interference Patterns in 0-pi Josephson Junctions
The spontaneous flux generation and magnetic field modulation of the critical
current in a 0-pi Josephson junction are calculated for different ratios of the
junction length to the Josephson penetration depth, and different ratios of the
0-junction length to the pi-junction length. These calculations apply to a
Pb-YBCO c-axis oriented junction with one YBCO twin boundary, as well as other
experimental systems. Measurements of such a junction can provide information
on the nature of the c-axis Josephson coupling and the symmetry of the order
parameter in YBCO. We find spontaneous flux even for very short symmetric 0-pi
junctions, but asymmetric junctions have qualitatively different behavior.Comment: 13 pages, TEX,+ 7 figures, postscrip
Electronic structure in underdoped cuprates due to the emergence of a pseudogap
The phenomenological Green's function developed in the works of Yang, Rice
and Zhang has been very successful in understanding many of the anomalous
superconducting properties of the deeply underdoped cuprates. It is based on
considerations of the resonating valence bond spin liquid approximation and is
designed to describe the underdoped regime of the cuprates. Here we emphasize
the region of doping, , just below the quantum critical point at which the
pseudogap develops. In addition to Luttinger hole pockets centered around the
nodal direction, there are electron pockets near the antinodes which are
connected to the hole pockets by gapped bridging contours. We determine the
contours of nearest approach as would be measured in angular resolved
photoemission experiments and emphasize signatures of the Fermi surface
reconstruction from the large Fermi contour of Fermi liquid theory (which
contains hole states) to the Luttinger pocket (which contains hole
states). We find that the quasiparticle effective mass renormalization
increases strongly towards the edge of the Luttinger pockets beyond which it
diverges.Comment: 11 pages, 9 figure
A massive exoplanet candidate around KOI-13: Independent confirmation by ellipsoidal variations
We present an analysis of the KOI-13.01 candidate exoplanet system included
in the September 2011 Kepler data release. The host star is a known and
relatively bright visual binary with a separation
significantly smaller (0.8 arcsec) than the size of a Kepler pixel (4 arcsec
per pixel). The Kepler light curve shows both primary and secondary eclipses,
as well as significant out-of-eclipse light curve variations. We confirm that
the transit occurs round the brighter of the two stars. We model the relative
contributions from (i) thermal emission from the companion, (ii) planetary
reflected light, (iii) Doppler beaming, and (iv) ellipsoidal variations in the
host-star arising from the tidal distortion of the host star by its companion.
Our analysis, based on the light curve alone, enables us to constrain the mass
of the KOI-13.01 companion to be and thus
demonstrates that the transiting companion is a planet (rather than a brown
dwarf which was recently proposed by \cite{b7}). The high temperature of the
host star (Spectral Type A5-7V, K), combined with the
proximity of its companion KOI-13.01, may make it one of the hottest exoplanets
known, with a detectable thermal contribution to the light curve even in the
Kepler optical passband. However, the single passband of the Kepler light curve
does not enable us to unambiguously distinguish between the thermal and
reflected components of the planetary emission. Infrared observations may help
to break the degeneracy, while radial velocity follow-up with 100
m s precision should confirm the mass of the planet.Comment: 7 pages, 5 figure
Fermi-Liquid Interactions in d-Wave Superconductor
This article develops a quantitative quasiparticle model of the
low-temperature properties of d-wave superconductors which incorporates both
Fermi-liquid effects and band-structure effects. The Fermi-liquid interaction
effects are found to be classifiable into strong and negligible renormalizaton
effects, for symmetric and antisymmetric combinations of the energies of
and quasiparticles, respectively. A particularly
important conclusion is that the leading clean-limit temperature-dependent
correction to the superfluid density is not renormalized by Fermi-liquid
interactions, but is subject to a Fermi velocity (or mass) renormalization
effect. This leads to difficulties in accounting for the penetration depth
measurements with physically acceptable parameters, and hence reopens the
question of the quantitative validity of the quasiparticle picture.Comment: 4 page
Chiral d+is superconducting state in the two dimensional t-t' Hubbard model
Applying the recently developed variational approach to Kohn-Luttinger
superconductivity to the t-t' Hubbard model in two dimensions, we have found,
for sizeable next-nearest neighbor hopping, an electron density controlled
quantum phase transition between a d-wave superconducting state close to half
filling and an s-wave superconductor at lower electron density. The transition
occurs via an intermediate time reversal breaking d+is superconducting phase,
which is characterized by nonvanishing chirality and density-current
correlation. Our results suggest the possibility of a bulk time reversal
symmetry breaking state in overdoped cuprates
The Prograde Orbit of Exoplanet TrES-2b
We monitored the Doppler shift of the G0V star TrES-2 throughout a transit of
its giant planet. The anomalous Doppler shift due to stellar rotation (the
Rossiter-McLaughlin effect) is discernible in the data, with a signal-to-noise
ratio of 2.9, even though the star is a slow rotator. By modeling this effect
we find that the planet's trajectory across the face of the star is tilted by
-9 +/- 12 degrees relative to the projected stellar equator. With 98%
confidence, the orbit is prograde.Comment: ApJ, in press [15 pages
Disorder and chain superconductivity in YBa_2Cu_3O_{7-\delta}
The effects of chain disorder on superconductivity in YBa_2Cu_3O_{7-\delta}
are discussed within the context of a proximity model. Chain disorder causes
both pair-breaking and localization. The hybridization of chain and plane
wavefunctions reduces the importance of localization, so that the transport
anisotropy remains large in the presence of a finite fraction of
oxygen vacancies. Penetration depth and specific heat measurements probe the
pair-breaking effects of chain disorder, and are discussed in detail at the
level of the self-consistent T-matrix approximation. Quantitative agreement
with these experiments is found when chain disorder is present.Comment: 4 pages, 2 figures, submitted to PRB rapid communication
- …
