24 research outputs found

    The Rest-Frame Instant Form of Relativistic Perfect Fluids and of Non-Dissipative Elastic Materials

    Full text link
    For perfect fluids with equation of state ρ=ρ(n,s)\rho = \rho (n,s), Brown gave an action principle depending only on their Lagrange coordinates αi(x)\alpha^i(x) without Clebsch potentials. After a reformulation on arbitrary spacelike hypersurfaces in Minkowski spacetime, the Wigner-covariant rest-frame instant form of these perfect fluids is given. Their Hamiltonian invariant mass can be given in closed form for the dust and the photon gas. The action for the coupling to tetrad gravity is given. Dixon's multipoles for the perfect fluids are studied on the rest-frame Wigner hyperplane. It is also shown that the same formalism can be applied to non-dissipative relativistic elastic materials described in terms of Lagrangian coordinates.Comment: revtex file, 70 page

    Topological Black Holes in Quantum Gravity

    Get PDF
    We derive the black hole solutions with horizons of non-trivial topology and investigate their properties in the framework of an approach to quantum gravity being an extension of Bohm's formulation of quantum mechanics. The solutions we found tend asymptotically (for large rr) to topological black holes. We also analyze the thermodynamics of these space-times.Comment: 4pages, no figures, plain LaTe

    Kappa - Poincare dispersion relations and the black hole radiation

    Get PDF
    Following the methods developed by Corley and Jacobson, we consider qualitatively the issue of Hawking radiation in the case when the dispersion relation is dictated by quantum kappa-Poincare algebra. This relation corresponds to field equations that are non-local in time, and, depending on the sign of the parameter kappa, to sub- or superluminal signal propagation. We also derive the conserved inner product, that can be used to count modes, and therefore to obtain the spectrum of black hole radiation in this case.Comment: 11 pages, 2 figure

    Semileptonic decays of Bs1B_{s1}, Bs2B_{s2}^*, Bs0B_{s0} and Bs1B_{s1}'

    Full text link
    Stimulated by recent observations of the excited bottom-strange mesons Bs1B_{s1} and Bs2B_{s2}^*, we calculate the semileptonic decays Bs0,Bs1,Bs1,Bs2[Ds(1968),Ds(2112),DsJ(2317),DsJ(2460)]νˉB_{s0}, B_{s1}^{\prime}, B_{s1}, B_{s2}^*\to [D_s(1968), D_{s}^*(2112), D_{sJ}(2317), D_{sJ}(2460)]\ell\bar{\nu}, which is relevant for the exploration of the potential of searching these semileptonic decays in experiment.Comment: 11 pages, 3 figures, 9 tables. More discussion added, some descriptions changed. The version to appear in EPJ

    B_c meson rare decays in the light-cone quark model

    Full text link
    We investigate the rare decays BcDs(1968)ˉB_c \rightarrow D_s(1968) \ell \bar{\ell} and BcDs(2317)ˉB_c\rightarrow D_s^*(2317) \ell \bar{\ell} in the framework of the light-cone quark model (LCQM). The transition form factors are calculated in the space-like region and then analytically continued to the time-like region via exponential parametrization. The branching ratios and longitudinal lepton polarization asymmetries (LPAs) for the two decays are given and compared with each other. The results are helpful to investigating the structure of BcB_c meson and to testing the unitarity of CKM quark mixing matrix. All these results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ

    MATRIX ISOLATION STUDIES OF NUCLEIC ACID CONSTITUENTS. I. INFRARED SPECTRA OF URACIL MONOMERS

    No full text
    Author Institution: Institute of Physics, Polish Academy of Sciences; Department of Chemistry, University of FloridaResults of infrared studies of uracil and its N1,N3N_{1},N_{3}-dideuterated homologue isolated in argon and nitrogen matrices are presented and discussed in terms of normal modes predicted by quantum mechanical calculations .The effects on the spectrum of N-deuteration and of the interaction between the isolated molecule and the matrix are discussed. The quantum mechanical calculations are used to make a resonably reliable first assignment absorption bands to all the normal modes for the matrix-isolated uracil molecule. The wave numbers and relative intensities for the absorption bands for the isolated molecule are related to those reported previously for uracil in the solid phase or in polar solution but differ significantly from them
    corecore