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Abstract

Following the methods developed by Corley and Jacobson, we consider qualitatively the issue of Hawking radiation in the
case when the dispersion relation is dictated by quantumκ-Poincaré algebra. This relation corresponds to field equations that
are non-local in time, and, depending on the sign of the parameterκ, to sub- or superluminal signal propagation. We also derive
the conserved inner product, that can be used to count modes, and therefore to obtain the spectrum of black hole radiation in
this case.
 2001 Elsevier Science B.V.
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1. Introduction

In the recent years there is a growing interest in
investigations of the possible role played by modified
(or broken) Lorentz invariance in ultra-high energy
phenomena. There are many reasons for that. First of
all, we do not have an access yet to any experimental
data concerning effects that take place at the energy
scale close to Planck scale. Given this and the fact
that there is something alarming in the ease one can,
in principle, probe the Planck scale just by Lorentz
boosting, it is natural to ask a question what would
happen if one deforms the Lorentz (or Poincaré)
symmetry. Moreover, it seems quite likely that we
may have an access to the Planck-scale physics in
the near future, and perhaps, we already see traces

E-mail addresses:ablaut@ift.uni.wroc.pl (A. Błaut),
jurekk@ift.uni.wroc.pl (J. Kowalski-Glikman),
dobno@ift.uni.wroc.pl (D. Nowak-Szczepaniak).

1 Partially supported by the KBN grant 5PO3B05620.

of Planck-scale phenomena in the form of cosmic
rays anomalies, that can be explained by making use
of modification of Lorentz symmetry (see [1,2] and
references therein).

Most of the papers studying the problem of mod-
ified Lorentz symmetry addressed the question as
to how modified dispersion relation would influence
physical phenomena, which might be “windows” to
the Planck-scale physics. One of them is the structure
formation in inflationary cosmology, where the fluctu-
ations that we see now in the form of temperature fluc-
tuation in the background microwave radiation spec-
trum were initially to be of the size comparable with
the Planck length [3–6].

Another setting in which such analysis was per-
formed is the black hole physics and the issue of
Hawking radiation [8–11]. This works has shown that
the properties of Hawking radiation are highly insen-
sitive to the class of deformations of dispersion rela-
tions, which has been considered. The only exception
from this rule seems to be a case of a black hole with
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both inner and outer horizons considered in [12]. One
should be careful however in making any judgment on
the basis of a finite number of examples analyzed so
far. The dispersion relation considered by Unruh [8]
was devised so as to mimic a property of fluid, making
possible observation of “sonic black holes”. The dis-
persion relation of Corley and Jacobson, on the other
hand, can be understood only as a leading-order ap-
proximation of the unknown dispersion relation gov-
erning the Planck-scale physics, and thus, their analy-
sis cannot be regarded as fully conclusive.

In this Letter we will repeat the analysis of Corley
and Jacobson [10] in the case of dispersion relation
motivated by a possible role that quantum algebras
may play in fundamental physics.

The rest of the Letter is organized as follows.
In Section 2 we introduce theκ-Poincaré dispersion
relation and field equations in flat spacetime that
follow from it, together with a properly defined inner
product for complex scalar fields. Section 3 will be
devoted to black hole radiation in the standard case,
and in Section 4 we will perform the qualitative
analysis in the case of deformed dispersion relation.

2. Field equations in Minkowski spacetime

Our starting point will be the so-calledκ-Poincaré
algebra [13–15], being a quantum deformation of the
standard Poincaré algebra that in recent months has
become an object of intensive studies [16–19], as
a possible candidate for the algebra ofkinematical
symmetries of Planck scale physics. In the massless
case this dispersion relation takes the form

(1)

(
2κ sinh

(
ω

2κ

))2

− �k2eω/κ = 0,

whereω and �k are energy and momentum, respec-
tively, andκ is the parameter of dimension of mass
(in the unit wherec andh̄ are set equal to 1), which is
to be identified with the Planck mass.2 At this point
one should stress that there is an important differ-
ence between the case considered in this paper and the
one analyzed by Unruh, Corley, Jacobson and others.

2 This identification is supported by the analysis of cosmic rays
anomalies, see [1].

Namely the dispersion relation (1) leads to field equa-
tions which are non-local in time, contrary to equa-
tions non-local in space studied before.

In the rest of the Letter we will be dealing with the
two-dimensional case, and in order to make the prob-
lem treatable, instead of using the dispersion relation
(1) our starting point will be a slightly modified rela-
tion

(2)k2 = e−ω/κ

(
2κ sinh

(
ω

2κ

))2

= κ2(1− e−ω/κ
)2
.

The major difference between these two relations is
that (1) isinvariant with respect toκ-Poincaré trans-
formations (see, e.g., [15]), while (2) only covariant
(i.e., invariant “on-shell”, when (2) holds).

In what follows we will consider two cases:κ > 0,
which will be called super-luminal andκ < 0, which
will be called sub-luminal. This terminology is moti-
vated by the fact that in the former case the (momen-
tum dependent) speed of massless modes, defined as
C = ∂p0/∂p = ∂ω/∂k for ω > 0, is greater than 1, and
smaller than 1 in the latter (see [16–20]).

In order to compute a spectrum of black hole
radiation one must have in disposal a conserved inner
product, whose existence in the case of a system with
infinite number of time derivatives is by no means
clear, and moreover, even if such a product exists one
must be able to explicitly find mutually orthogonal
modes of positive and negative norms. Let us show
therefore how such a product can be constructed in two
dimensional Minkowski spacetime.

We start with the following equation of motion for
the complex scalar fieldφ,

(3)f (i∂t )φ + ∂2
xφ = 0,

and its complex conjugate

(4)f (i∂t )
∗φ∗ + ∂2

xφ
∗ = 0,

for some analytical functionf , in the form as in (6)
below. In order to construct the scalar product, we
start with the following integral for the two arbitrary
complex scalar fieldsφ1, φ2∫
D

dx dt
{
φ∗

1

(
f (i∂t )+ ∇2)φ2

− φ2
(
f (i∂t)+ ∇2)∗

φ∗
1

}
,

whereD denotes a compact integration region, which
is bounded by two space-like hypersurfaces att1
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and t2, say. The expression under integral is a diver-
gence∼ ∂tQ+ ∂xJ . Now if we assume that the func-
tionsφi are on-shell and have a proper fall-off at spa-
tial infinity, one can define the conserved inner product
as

(5)Ω(φ1, φ2) = −i

∫
t=const

dxQ(φ1, φ2).

To findQ let us first expand

(6)f (z)=
∞∑
n=0

anz
n, an ∈ R.

Then it can be easily shown by partial integration that
Q(φ1, φ2) is of the form

(7)Q(φ1, φ2)=
∞∑
n=1

inan

n−1∑
k=0

(−1)k∂kt φ
∗
1∂

n−k−1
t φ2.

Let us now show that plane waves solutions form an
orthogonal system with respect to the product (5). Let

φ1 = eik1x−iω1(k1)t , φ2 = eik2x−iω2(k2)t .

Then

(8)Ω(φ1, φ2) = 2πδ(k1 − k2)

∞∑
n=1

an

n−1∑
k=0

ωk
1ω

n−k−1
2 .

The norm of a plane wave is therefore

Ω(φ,φ)∼ 2π
∞∑
n=1

an

n−1∑
k=0

ωkωn−k−1

(9)= 2π
∞∑
n=1

nanω
n−1 = 2π

df (ω)

dω
.

The waves with differentk are orthogonal, of course.
There is, however, one more case which must be
considered, namely, what happens when one has to do
with a singlek but two differentω. In the standard
case,�k2 = ω2 we haveω1 = −ω2, in the expansion
(6) only a2 = 1 differs from zero, and the situation is
simple. In the case at hands, the reasoning is bit more
involved. Sinceω1 �= −ω2 are related to the samek,
using (6) one can write

k2 =
∞∑
n=0

anω
n
1 =

∞∑
n=0

anω
n
2,

from which we obtain

0=
∞∑
n=0

an
(
ωn

1 −ωn
2

)

= (ω1 −ω2)

∞∑
n=0

an

n−1∑
k=0

ωk
1ω

n−k−1
2 .

Thus we found that in general

(10)Ω(φ1, φ2)= 2πδ(k1 − k2)δω1,ω2

df

dω
(ω1),

and this enables us to find the pseudo-orthonormal
basis for the inner product (5), which will be used in
the analysis of the spectrum of the black hole radiation
in the case of modified dispersion relation (2).

3. Hawking radiation, standard case

Here we recall briefly the step leading to derivation
of Hawking radiation in the standard case, i.e., when
k2 = f (ω)= ω2.

Following Corley and Jacobson we consider the
(two-dimensional) black hole metric of the form

(11)ds2 = dt2 − (
dx − v(x) dt

)2
,

where for the Schwarschild spacetimev(x) =
−√

2M/x.
Consider a single frequency WKB mode of the form

(12)φ ∼ exp

(
i

∫
k dx

)
e−iωt ,

whereφ is a Klein–Gordon field in the metric (11).
Assuming that bothk andv are slowly varying with
position we get, the dispersion relation of the form

(13)(ω − vk)2 = k2,

from whichk = ω/(1+ v). Observe that this equation
defines a frequencyω′ = ω − vk being the frequency
of the wave as seen by the freely falling observer.
We seek the minimal (negative) value ofv for which
Eq. (13) has a solution. In the case at hands we take
v = −1 andx = 0 to correspond to the horizon of
black hole. Now we can expand around this point to
get v � −1 + "x, where "= −v′(0) = 1/4M is the
surface gravity. Inserting this to Eq. (12) we find that

(14)φ ∼ exp

(
i
ω

"
log(x)

)
.
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To extract the positive and negative frequency parts as
defined by freely falling observers near the horizon,
we must analytically continue the solution to negative
x through the upper and lower complexx plane.
In this way we obtain two functionsφ+ and φ−
corresponding to positive and negative wavevectors,
respectively:

φ+ = φ + exp

(
−π

ω

"

)
φ̃,

(15)φ− = φ + exp

(
π
ω

"

)
φ̃,

whereφ̃ is defined by

(16)φ̃(x) =
{

0, x > 0,
φ(−x), x < 0.

They agree with (14) on the positivex axis and their
ratio forx < 0 equals

(17)
φ+
φ−

= exp

(
−2π

ω

"

)
.

To compute the average number of particles of en-
ergy h̄ω produced in the Hawking process one has to
evaluate the square of the norm of the negative fre-
quency part of the resulting initial mode. The positive
frequency final mode vanishing for the negativex is
equal

(18)φ ∼ ψ = φ+ − exp

(
−2π

ω

"

)
φ−.

Using the fact that Klein–Gordon inner productΩKG

satisfies

ΩKG(φ+, φ+)= 1− exp

(
−2π

ω

"

)
,

ΩKG(φ−, φ−)= 1− exp

(
2π

ω

"

)
,

(19)ΩKG(φ+, φ−)= 0,

one finds

−〈nω〉 = ΩKG(φ−, φ−)exp
(−4π ω

"

)
ΩKG(ψ,ψ)

= 1
ΩKG(φ+,φ+)

ΩKG(φ−,φ−)
exp

(
4π ω

"

) + 1

(20)= 1

−exp
(
2π ω

"

) + 1

which is exactly the Hawking formula.

4. Black hole radiation with κ -Poincaré dispersion

In the metric (11) the field equation describing the
dynamics of massless scalar field is given by

(21)

Ŝφ ≡ [
κ2(1− e− i

κ
(∂t+∂x v(x))

)
× (

1− e− i
κ
(∂t+v(x) ∂x)

) + ∂2
x

]
φ = 0.

BecausêS is a self-adjoint differential operator in the
sense that

(22)
∫

dt dx ψ∗
1 Ŝψ2 =

∫
dt dx

(
Ŝψ1

)∗
ψ2

for all complex functionsψ1, ψ2, vanishing with all
derivatives at the boundary of the integration domain,
one can construct an inner product in analogy to
Section 2.

Now we again make use of the WKB approximation
(12) and substitute it into Eq. (21) neglecting the terms
∂xv and∂xk/k. As the result we obtain

k2 = κ2(1− e−(ω−v(x)k)/κ
)2

(23)≡ f (ω − v(x)k) = f (ω′).

Using the previous result, Eq. (9), one sees that in
regions wherev is approximately constant solutions
satisfyingi(∂t + v∂x)φ = ω′φ have positive (negative)
Klein–Gordon norm forω′ > 0 (ω′ < 0).

The intercept points of the lineω′ = ω − v(x)k

with x-dependent slope and the curvek2−f 2(ω′)= 0
on the (k,ω′) plane correspond to possible values
of wavevectors. In the case ofκ-Poincaré dispersion
relation (2), we have

(24)ω′ = −κ log

(
1± |k|

κ

)
≡ F(k)

for super-luminalκ > 0, and for the sub-luminal,
κ < 0 cases (see Figs. 1 and 2 for details).

Let us pause at this point to make an important
comment. Any reasonable functionF(k) must satisfy
the condition

F(k) ∼ k

for sufficiently smallk, so that it corresponds to the
standard dispersion relation for small momenta. To
make this statement more precise, it should be noted
that from purely dimensional reason, the function
F(k) must contain a scale, so it is of the formF(k; κ)
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and satisfies the condition

F(k; κ)= k +O

(
k2

κ2

)
for k/κ � 1.

This means that forω small enough (i.e.,ω/κ � 1) the
solutions of Eq. (23) is in leading order the same as in
the standard case. One can conclude therefore that, if
one defines the initial vacuum as seen by the freely
falling observer near the horizon, for low frequencies
the spectrum will be almost thermal with differences
in the high frequency part of the spectrum, at least for
temperatures (surface gravity) small compared to the
scaleκ . But, of course, it does not make sense at all to
consider situation when the temperature is of order of,
or higher thanκ , because such a regime corresponds
to quantum gravity (recall thatκ is of order of
Planck scale) and the approximation of Schwarzschild
background geometry would almost certainly not hold.

The question then arises if for temperatures reason-
ably below κ scale there is any deviation from the
Hawking result.3 It should be stressed that the ratio-
nale for asking this question is rather different from
that in [8–12]. There the question was if, by mak-
ing use of a non-standard dispersion relation, one can
avoid trans-Planckian frequencies keeping at the same
time the qualitative picture of Hawking process. Even
though, on technical level the goal of our work is the
same, our physical motivation is different: we have the
dispersion relation to start with, and the question we
ask ourselves is if it does change the thermal behavior
of black holes?

To answer this question consider the group velocity
of a wavepacket. It can be expressed as

(25)vg = v′
g + v(x),

wherevg = dω/dk is the group velocity with respect
to the static frame andv′

g = dω′/dk is the one
corresponding to the freely falling frame. The detailed
discussion presented in [10] indicates that thesin equa
non condition for Hawking radiation to occur is that
there exists a anegativefree-fall frequency part of the

3 At this point it is worth recalling that the similar question has
been asked in the context of inflationary cosmology (i.e., is it any
deviation from Harrison–Zeldovich spectrum if one makes use of
modified dispersion relation [3–7]), and it turned out that the answer
depends on the form of relation used, as well as the form of initial
conditions.

Fig. 1. The behaviorω′ vs.k in super-luminal case (κ = 1).

outgoing mode after being propagated back to early
times.

Knowing this we can turn to the analysis of theκ-
Poincaré dispersion relation. Let us consider first the
super-luminal case (κ > 0). The corresponding picture
can be found in Fig. 1.

We see that there are three intersections of the
line ω − v(x)k with the curveF(k), Eq. (24) which,
following notation of [10], we call (from the left to the
right of the figure)k−, k−s , k+. For these intersections
one can estimate the signs of group velocities in both
frames of reference

for k− v′
g > 0, vg < 0 → ingoing packet,

for k−s v′
g < 0, vg < 0 → ingoing packet,

(26)for k+ v′
g > 0, vg > 0 → outgoing packet.

Following the standard analysis (see also [10]) we
conclude that the number of created particles in final
stateψout is given by

(27)n(ψout)= −Ω(ψ−,ψ−),

whereψ− denotes the ingoing part of the solution
with negative free-fall frequency. In our case the
solution corresponding to the wavevectork− satisfies
this condition. However, we do not know whether it
is possible for the outgoing solution centered around
k+ to undergo the mode conversion which is essential
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Fig. 2. The behaviorω′ vs.k in sub-luminal case (κ = −1).

in the analysis. Although the naive diagram analysis
indicates that it is not the case, one must remember
that near the horizon the WKB approximation brakes
down and the mode conversion as well as the particle
production might be possible. Here, unlike in [11]
and [12], the negative frequency modes that give rise
to particle production originate at infinity rather than
inside the horizon. Still, in order to reach any final
conclusion, one needs to perform detailed numerical
studies.

Let us now turn to the sub-luminal case, illustrated
in Fig. 2. In this case for given positiveω outside
the horizon there are, depending on the distance from
the horizon, either three solutionsk−s , k+s , k+ (in-
going, outgoing, ingoing mode, respectively), or two
k−s , k+s (ingoing, hanging), or only onek−s . None
of them contributes to the creation of particles since
all have a positive free-fall frequency. Again this con-
clusion is drawn under the assumption of the validity
of WKB approximation which for small Killing fre-
quenciesω brakes in the vicinity of the horizon. Tak-
ing sufficiently smallω one can get arbitrarily close to
the horizon. Then the mode conversion to negativeω′
might be possible resulting in two negative wavevector
wavepackets, one of which would represent the ingo-
ing mode. Such negative frequency wavepacket giv-
ing rise to the black hole radiation would originate far
inside the horizon. Note, however, that there is a dif-

ference between the subluminal dispersion case con-
sidered by [10] and the one discussed here. The inter-
section with the negative branch of dispersion relation
occurs only inside the horizon. The appearance of a
“gap” makes the mode conversion less obvious.

In the analysis above we followed exactly the
methods developed by Corley and Jacobson [10], but
this is only half of a story. In our case dispersion
relations are not symmetric with respect to inversion
ω′ → −ω′, and therefore we have to do with complex
field equations. Since the corresponding field operator
φ̂ will not be hermitian one might, in analogy with
the standard analysis, define creation and annihilation
operators for particles and antiparticles, the latter
corresponding to negative frequency waves.

Therefore the complete analysis of the spontaneous
creation of particles (see, for example, [22,23]) should
include tracing both the outgoing positive frequency
and outgoing negative frequency modes backwards in
time, and will be presented elsewhere [21].

We have shown therefore that in both cases the
existence of “Hawking-type” radiation is possible.
However, in both super- and subluminal regimes there
are obstacles that, in principle, may lead to strong
suppression of the radiation for higher frequencies.
Of course both these results rely on the validity of
WKB regime, and the detailed analysis of this regime
as well as the quantitative numerical study of the
qualitative results of this paper will be presented
elsewhere [24]. The analysis presented here indicates,
however, that such studies are worth undertaking,
since the qualitative picture which emerged from our
investigations presented here differs in many respects
from the one studied before.
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