42 research outputs found

    Impact of grinding wheel specification on surface integrity and residual stress when grinding Inconel 718

    Get PDF
    The grinding process is often maligned by grinding burn; which refers to many unwanted effects, including residual stress formation. This paper presents an overview of the role of grinding wheel technologies in the surface response and residual stress formation of thin section Inconel 718. Using production standard equipment, conventional abrasive vitrified, and super abrasive electroplated wheel technologies were evaluated in initial comparative trials. Results revealed the dominant residual stress profiles, which manifested as measurable distortion and the thermo-mechanical impact of grinding, such as softening. Following this, a parametric study was carried out using cubic boron nitride super abrasive electroplated wheels to investigate the interaction of grinding parameters on the generated output. It was shown that at increased grinding aggressions, tensile stress regimes increased resulting in increased distortion magnitudes. The study highlights the importance of assessing residual stress formation when manipulating both wheel technologies and grinding parameters. It is envisaged that with additional assessment, a route to an engineered residual stress profile might be achieved

    On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process

    Get PDF
    The unique material nature (e.g. hard, brittle, heterogeneous and orthotropic) of SiC-based Ceramic Matrix Composites (CMCs) highly affects the outcomes of machining process by inducing high thermo-mechanical loads during material removal. This can result in severe material damage which in turn causes a reduction of the in-service life of critical structural ceramic components (such as in aero-engines or nuclear reactors). In this study, the phenomenon by which the material removal mechanism during drilling influences the CMC surface integrity are discussed by characterising the fracture and deformation phenomena on the CMC's constituents - i.e. SiC and Si materials. Moreover, the strain induced to the surface, together with the changes in chemical composition are characterised via micro Raman spectroscopy and related to the principles of residual stresses upon cutting. This results in a novel understanding of the material removal process that governs cutting of SiC-based CMCs while emphasising how the different microstructure, morphology and nature of ceramics behave under the same cutting conditions. This study has therefore led to a comprehension of how the microstructure of complex hierarchical ceramic materials such as SiC/SiC CMCs is affected by a mechanical cutting process and opens avenues to understand the structure damage under other machining operations (e.g. milling, grinding)

    An experimental study of the effects of dressing parameters on the topography of grinding wheels during roller dressing

    Get PDF
    Vitreous-bonded grinding wheels are widely used for machining features on aerospace components achieving high material removal rates under high pressure coolant. Dressing is a vital stage in the grinding process to ensure a consistent wheel topography and performance. However, the effects of roller dressing on functional performance of vitreous grinding wheels as well as its influence on different abrasive grit morphologies have not been fully characterised. This paper studies the influence of dressing parameters on the topography, morphology and characteristics of the surface of different vitrified abrasive wheels in order to better understand the process and therefore optimise the preparation of grinding wheels for industrial machining. Alumina grinding wheels with conventional and engineered grit shapes were dressed at two different infeed rates over a range of seven different speed ratios (from −0.8 to +1). An experimental methodology has been developed incorporating a range of known techniques to define the abrasive wheel condition including measured power consumption and ground graphite coupons as well as using optical microscopes to measure grain fracture flats, peak density and abrasive grain shape. It has been found that power consumption of the grinding wheel spindle increases at higher infeed rates and speed ratios. This leads to increased fracturing of the grains and whole-grain pull out. According to the results the infeed rate has a more substantial effect on wheel topography than speed ratio and the response of engineered grit morphologies to dressing is dependent on grit orientation

    Assessment of workpiece surface integrity and dimensional/geometrical accuracy following finish plunge end milling of holes drilled with worn tools in PM-processed nickel based superalloy

    Get PDF
    Powder metallurgy (PM) processed nickel-based superalloys are increasingly employed in the hot section of gas turbine engines for parts such as high-pressure (HP) compressors and turbine rotor discs over more traditional cast and wrought options such as Inconel 718 due to its improved high-temperature properties. In this paper, the surface integrity and geometrical/dimensional accuracy of holes initially rough drilled using worn tools and subsequently finish plunge end milled in a proprietary PM-processed Ni-based superalloy, were assessed and compared. The influence of tool wear on hole quality after finish plunge end milling was also investigated. Significant improvement in hole quality was evident following finishing with reductions in surface roughness (up to ~86%), subsurface microhardness (up to ~125 HK0.05) and workpiece microstructure deformation/damage (up to ~80% in terms of average depth) compared to corresponding rough drilled holes. Evidence of chatter marks on holes machined with worn plunge end mills was observed, despite exhibiting reduced surface roughness levels (~45-73%). Generally, somewhat improved hole surface integrity (reduced subsurface deformation by ~47-64%) and geometrical accuracy (circularity decreased by ~10-25%) were produced when employing new tools.</p

    Assessment of workpiece surface integrity and dimensional/geometrical accuracy following finish plunge end milling of holes drilled with worn tools in PM-processed nickel based superalloy

    Get PDF
    Powder metallurgy (PM) processed nickel-based superalloys are increasingly employed in the hot section of gas turbine engines for parts such as high-pressure (HP) compressors and turbine rotor discs over more traditional cast and wrought options such as Inconel 718 due to its improved high-temperature properties. In this paper, the surface integrity and geometrical/dimensional accuracy of holes initially rough drilled using worn tools and subsequently finish plunge end milled in a proprietary PM-processed Ni-based superalloy, were assessed and compared. The influence of tool wear on hole quality after finish plunge end milling was also investigated. Significant improvement in hole quality was evident following finishing with reductions in surface roughness (up to ~86%), subsurface microhardness (up to ~125 HK0.05) and workpiece microstructure deformation/damage (up to ~80% in terms of average depth) compared to corresponding rough drilled holes. Evidence of chatter marks on holes machined with worn plunge end mills was observed, despite exhibiting reduced surface roughness levels (~45-73%). Generally, somewhat improved hole surface integrity (reduced subsurface deformation by ~47-64%) and geometrical accuracy (circularity decreased by ~10-25%) were produced when employing new tools.</p

    An investigation into the challenges of the point grinding machining process

    Get PDF
    Point grinding is an abrasive machining process that utilises miniature single layer superabrasive tools to remove material. The use of such small diameter tools offers advantages in the manufacturing of small or difficult to access complex 3D geometries, however, in their current state, these tools suffer from several critical challenges preventing their successful implementation. An investigation into the use of a typical commercially available point grinding tool for machining of hardened steel components has been carried out, with the aim of identifying the critical process challenges. The requirement for high rotational speeds, high tool deflection, variation in grit protrusion heights and bond layer thickness, accelerated tool wear, increased sensitivity to runout, zero cutting speed at tooltip and high tool loading have been identified as the main issues affecting the point grinding process. It is crucial that these challenges are correctly understood to facilitate future tool development

    Probabilistic modelling of tool unbalance during cutting of hard-heterogeneous materials: a case study in Ceramic Matrix Composites (CMCs)

    Get PDF
    Compared to other materials, CMCs display a unique high hardness and heterogeneous nature which are critically reflected during the drilling process where asymmetrical high forces are suffered by the tool, resulting in an unbalance of the drill bit. Hence, this study proposes a mechanistic approach where the hard nature resulting in high radial forces is analytically studied and coupled with a probabilistic model where the heterogeneous nature of CMCs is taken into consideration. This theoretical study results in an in-depth understanding of the loading unbalance occurring on different tool sizes during drilling of CMCs which can lead to a premature tool breakage. The nature of this unique force that is assumed in the theoretical approach to influence the cutting of hard-heterogeneous materials is experimentally validated by drilling a homogeneous and a heterogeneous hard ceramics, i.e. a monolithic SiC and a SiC/SiC CMC. Moreover, the model developed together the with drilling experiments with different tool diameters result in an understanding of why small tool diameters suffer a premature tool breakage when drilling difficult-to-machine CMCs

    Ultrasonic assisted creep feed grinding of Inconel 718

    Get PDF
    AbstractThe paper details the effects of depth of cut and vibration amplitude when ultrasonic assisted (US) creep feed grinding Inconel 718 with an open structured alumina based wheel. The workpiece was actuated at a constant frequency (∼20.5kHz) via a block sonotrode attached to a 1kW piezoelectric transducer-generator system. A full factorial experimental array comprising 12 tests was conducted involving variation in depth of cut (0.1, 0.5 and 1.0mm), amplitude of vibration (high and low) and grinding condition (with and without vibration). Wheel speed and table feed were fixed at 30m/s and 600mm/min respectively for all tests. Application of ultrasonic vibration resulted in reductions in vertical (Fv) and horizontal (Fh) force components by up to 28% and 37% respectively, however greater wheel wear (30-60% lower G-ratio) occurred under hybrid operation due to increased grit/bond fracture. SEM micrographs of the slots machined with US assistance revealed higher levels of side flow/ploughing in comparison to standard creep feed ground specimens. Additionally, more overlapping grit marks were visible on surfaces subject to ultrasonic assisted grinding. Increasing amplitude of vibration produced lower grinding forces (up to 30% for Fv and 43% for Fh) but higher workpiece surface roughness (up to 24%). Topographic maps of grinding wheel surface replicas indicated that use of US vibration generally led to an increase in the number of active cutting points on the wheel

    A study on ultrasonic assisted creep feed grinding of nickel based superalloys

    Get PDF
    AbstractThe paper initially reviews research relating to ultrasonic (US) assisted grinding of various workpiece materials. Results from experimental trials to evaluate the influence of applying US vibration when creep feed grinding Inconel 718 with an open structured, alumina based grinding wheel (POROS 2) are then presented. A full factorial experimental array comprising 18 runs was conducted involving variation in wheel speed (30, 35 and 40m/s), table speed (200, 250 and 300mm/min) and grinding condition (with and without vibration). For tests with US vibration, the workpiece was actuated at a constant frequency (∼20kHz) via a specially designed block sonotrode attached to a 1kW piezoelectric transducer-generator system. Reductions in vertical (FV) and horizontal (FH) grinding force components of up to 23% and 43% for FV and FH respectively and surface roughness (Sa) of the ground slots by up to 45% were observed in the majority of tests when utilising US assisted operation. In terms of surface quality, SEM micrographs revealed greater side flow/ploughing and overlapping grit marks in slots machined with the workpiece vibrated in comparison to standard creep feed ground specimens. Three dimensional topographic measurement of grinding wheel surface replicas indicated that US vibration led to an increase in the number of active cutting points on the wheel
    corecore