13 research outputs found

    Ultrafast Transient Dynamics of Adsorbates on Surfaces Deciphered: The Case of CO on Cu(100)

    Full text link
    Time-resolved vibrational spectroscopy constitutes an invaluable experimental tool for monitoring hot-carrier induced surface reactions. However, the absence of a full understanding on the precise microscopic mechanisms causing the transient spectral changes has been limiting its applicability. Here we introduce a robust first-principles theoretical framework that successfully explains both the nonthermal frequency and linewidth changes of the CO internal stretch mode on Cu(100) induced by femtosecond laser pulses. Two distinct processes engender the changes: electron-hole pair excitations underlie the nonthermal frequency shifts, while electron-mediated vibrational mode coupling gives rise to linewidth changes. Furthermore, the origin and precise sequence of coupling events are finally identified.Comment: Article as accepted for publication in Physical Review Letters; 5 pages, 2 figures, 1 tabl

    Roadmap for Photonics with 2D Materials

    Get PDF
    Triggered by advances in atomic-layer exfoliation and growth techniques, along with the identification of a wide range of extraordinary physical properties in self-standing films consisting of one or a few atomic layers, two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), and other van der Waals (vdW) crystals now constitute a broad research field expanding in multiple directions through the combination of layer stacking and twisting, nanofabrication, surface-science methods, and integration into nanostructured environments. Photonics encompasses a multidisciplinary subset of those directions, where 2D materials contribute remarkable nonlinearities, long-lived and ultraconfined polaritons, strong excitons, topological and chiral effects, susceptibility to external stimuli, accessibility, robustness, and a completely new range of photonic materials based on layer stacking, gating, and the formation of moiré patterns. These properties are being leveraged to develop applications in electro-optical modulation, light emission and detection, imaging and metasurfaces, integrated optics, sensing, and quantum physics across a broad spectral range extending from the far-infrared to the ultraviolet, as well as enabling hybridization with spin and momentum textures of electronic band structures and magnetic degrees of freedom. The rapid expansion of photonics with 2D materials as a dynamic research arena is yielding breakthroughs, which this Roadmap summarizes while identifying challenges and opportunities for future goals and how to meet them through a wide collection of topical sections prepared by leading practitioners
    corecore