2,300 research outputs found
Recommended from our members
Thermal stress-induced charge and structure heterogeneity in emerging cathode materials
Nickel-rich layered oxide cathode materials are attractive near-term candidates for boosting the energy density of next generation lithium-ion batteries. The practical implementation of these materials is, however, hindered by unsatisfactory capacity retention, poor thermal stability, and oxygen release as a consequence of structural decomposition, which may have serious safety consequences. The undesired side reactions are often exothermic, causing complicated electro-chemo-mechanical interplay at elevated temperatures. In this work, we explore the effects of thermal exposure on chemically delithiated LiNi0.8Mn0.1Co0.1O2 (NMC-811) at a practical state-of-charge (50% Li content) and an over-charged state (25% Li content). A systematic study using a suite of advanced synchrotron radiation characterization tools reveals the dynamics of thermal behavior of the charged NMC-811, which involves sophisticated structural and chemical evolution; e.g. lattice phase transformation, transition metal (TM) cation migration and valence change, and lithium redistribution. These intertwined processes exhibit a complex 3D spatial heterogeneity and, collectively, form a valence state gradient throughout the particles. Our study sheds light on the response of NMC-811 to elevated temperature and highlights the importance of the cathode's thermal robustness for battery performance and safety
Probing 5f-state configurations in URu2Si2 with U L3-edge resonant x-ray emission spectroscopy
Resonant x-ray emission spectroscopy (RXES) was employed at the U L3
absorption edge and the La1 emission line to explore the 5f occupancy, nf, and
the degree of 5f orbital delocalization in the hidden order compound URu2Si2.
By comparing to suitable reference materials such as UF4, UCd11, and alpha-U,
we conclude that the 5f orbital in URu2Si2 is at least partially delocalized
with nf = 2.87 +/- 0.08, and does not change with temperature down to 10 K
within the estimated error. These results place further constraints on
theoretical explanations of the hidden order, especially those requiring a
localized f2 ground state.Comment: 11 pages,7 figure
Solar Oscillations and Convection: II. Excitation of Radial Oscillations
Solar p-mode oscillations are excited by the work of stochastic,
non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the
expression for the radial mode excitation rate derived by Nordlund and Stein
(Paper I) using numerical simulations of near surface solar convection. We
first apply this expression to the three radial modes of the simulation and
obtain good agreement between the predicted excitation rate and the actual mode
damping rates as determined from their energies and the widths of their
resolved spectral profiles. We then apply this expression for the mode
excitation rate to the solar modes and obtain excellent agreement with the low
l damping rates determined from GOLF data. Excitation occurs close to the
surface, mainly in the intergranular lanes and near the boundaries of granules
(where turbulence and radiative cooling are large). The non-adiabatic pressure
fluctuations near the surface are produced by small instantaneous local
imbalances between the divergence of the radiative and convective fluxes near
the solar surface. Below the surface, the non-adiabatic pressure fluctuations
are produced primarily by turbulent pressure fluctuations (Reynolds stresses).
The frequency dependence of the mode excitation is due to effects of the mode
structure and the pressure fluctuation spectrum. Excitation is small at low
frequencies due to mode properties -- the mode compression decreases and the
mode mass increases at low frequency. Excitation is small at high frequencies
due to the pressure fluctuation spectrum -- pressure fluctuations become small
at high frequencies because they are due to convection which is a long time
scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue).
17 pages, 27 figures, some with reduced resolution -- high resolution
versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048
Solar Fe abundance and magnetic fields - Towards a consistent reference metallicity
We investigate the impact on Fe abundance determination of including magnetic
flux in series of 3D radiation-MHD simulations of solar convection which we
used to synthesize spectral intensity profiles corresponding to disc centre. A
differential approach is used to quantify the changes in theoretical equivalent
width of a set of 28 iron spectral lines spanning a wide range in lambda,
excitation potential, oscillator strength, Land\'e factor, and formation
height. The lines were computed in LTE using the spectral synthesis code LILIA.
We used input magnetoconvection snapshots covering 50 minutes of solar
evolution and belonging to series having an average vertical magnetic flux
density of 0, 50, 100 and 200 G. For the relevant calculations we used the
Copenhagen Stagger code. The presence of magnetic fields causes both a direct
(Zeeman-broadening) effect on spectral lines with non-zero Land\'e factor and
an indirect effect on temperature-sensitive lines via a change in the
photospheric T-tau stratification. The corresponding correction in the
estimated atomic abundance ranges from a few hundredths of a dex up to |Delta
log(Fe)| ~ 0.15 dex, depending on the spectral line and on the amount of
average magnetic flux within the range of values we considered. The
Zeeman-broadening effect gains relatively more importance in the IR. The
largest modification to previous solar abundance determinations based on
visible spectral lines is instead due to the indirect effect, i.e., the
line-weakening caused by a warmer stratification on an optical depth scale. Our
results indicate that the average solar iron abundance obtained when using
magnetoconvection models can be 0.03-0.11 dex higher than when using the
simpler HD convection approach. We demonstrate that accounting for magnetic
flux is important in state-of-the-art solar photospheric abundance
determinations based on 3D simulations.Comment: 12 pages, 7 figures, A&A in pres
Uncertainties of Synthetic Integrated Colors as Age Indicators
We investigate the uncertainties in the synthetic integrated colors of simple
stellar populations. Three types of uncertainties are from the stellar models,
the population synthesis techniques, and from the spectral libraries. Despite
some skepticism, synthetic colors appear to be reliable age indicators when
used for select age ranges. Rest-frame optical colors are good age indicators
at ages 2 -- 7Gyr. At ages sufficiently large to produce hot HB stars, the
UV-to-optical colors provide an alternative means for measuring ages. This UV
technique may break the age-metallicity degeneracy because it separates old
populations from young ones even in the lack of metallicity information. One
can use such techniques on extragalactic globular clusters and perhaps even for
high redshift galaxies that are passively evolving to study galaxy evolution
history.Comment: 38 pages, 21 figures, LaTex, 2003, ApJ, 582 (Jan 1), in pres
Excitation of solar-like oscillations across the HR diagram
We extend semi-analytical computations of excitation rates for solar
oscillation modes to those of other solar-like oscillating stars to compare
them with recent observations. Numerical 3D simulations of surface convective
zones of several solar-type oscillating stars are used to characterize the
turbulent spectra as well as to constrain the convective velocities and
turbulent entropy fluctuations in the uppermost part of the convective zone of
such stars. These constraints, coupled with a theoretical model for stochastic
excitation, provide the rate 'P' at which energy is injected into the p-modes
by turbulent convection. These energy rates are compared with those derived
directly from the 3D simulations. The excitation rates obtained from the 3D
simulations are systematically lower than those computed from the
semi-analytical excitation model. We find that Pmax, the excitation rate
maximum, scales as (L/M)^s where s is the slope of the power law and L and M
are the mass and luminosity of the 1D stellar model built consistently with the
associated 3D simulation. The slope is found to depend significantly on the
adopted form of the eddy time-correlation ; using a Lorentzian form results in
s=2.6, whereas a Gaussian one gives s=3.1. Finally, values of Vmax, the maximum
in the mode velocity, are estimated from the computed power laws for Pmax and
we find that Vmax increases as (L/M)^sv. Comparisons with the currently
available ground-based observations show that the computations assuming a
Lorentzian eddy time-correlation yield a slope, sv, closer to the observed one
than the slope obtained when assuming a Gaussian. We show that the spatial
resolution of the 3D simulations must be high enough to obtain accurate
computed energy rates.Comment: 14 pages ; 7 figures ; accepted for publication in Astrophysics &
Astronom
- …
