321 research outputs found

    Definitely saw it coming? The dual nature of the pre-nominal prediction effect

    No full text
    In well-known demonstrations of lexical prediction during language comprehension, pre-nominal articles that mismatch a likely upcoming noun's gender elicit different neural activity than matching articles. However, theories differ on what this pre-nominal prediction effect means and on what is being predicted. Does it reflect mismatch with a predicted article, or ‘merely’ revision of the noun prediction? We contrasted the ‘article prediction mismatch’ hypothesis and the ‘noun prediction revision’ hypothesis in two ERP experiments on Dutch mini-story comprehension, with pre-registered data collection and analyses. We capitalized on the Dutch gender system, which marks gender on definite articles (‘de/het’) but not on indefinite articles (‘een’). If articles themselves are predicted, mismatching gender should have little effect when readers expected an indefinite article without gender marking. Participants read contexts that strongly suggested either a definite or indefinite noun phrase as its best continuation, followed by a definite noun phrase with the expected noun or an unexpected, different gender noun phrase (‘het boek/de roman’, the book/the novel). Experiment 1 (N = 48) showed a pre-nominal prediction effect, but evidence for the article prediction mismatch hypothesis was inconclusive. Informed by exploratory analyses and power analyses, direct replication Experiment 2 (N = 80) yielded evidence for article prediction mismatch at a newly pre-registered occipital region-of-interest. However, at frontal and posterior channels, unexpectedly definite articles also elicited a gender-mismatch effect, and this support for the noun prediction revision hypothesis was further strengthened by exploratory analyses: ERPs elicited by gender-mismatching articles correlated with incurred constraint towards a new noun (next-word entropy), and N400s for initially unpredictable nouns decreased when articles made them more predictable. By demonstrating its dual nature, our results reconcile two prevalent explanations of the pre-nominal prediction effect

    Objective Function and Constraints for Robust Transonic Aerofoil Optimization

    Get PDF
    Construction of the aerodynamic optimization problem is considered within the context of robustness. The most common aerodynamic optimization problem considered is a lift-constrained drag minimization problem (also subject to geometric constraints), however, point-design at transonic flow conditions can produce shock-free solutions and therefore the result is highly localised, where the gains obtained at the design point are outweighed by the losses at off-design conditions. As such, a range optimization problem subject to a constraint on fixed non-dimensional lift with a varying design point is considered to mitigate this issue. It is shown, first from an analytical treatment of the problem, and second from inviscid optimizations, that more robust solutions are obtainable when considering range optimization against drag minimization. Furthermore, to effectively capture the trade-offs that exist in three-dimensional aircraft design between range, lift, drag and speed, it is shown that an induced drag factor is required and this is suffcient to produce optimal solutions exhibiting shocks

    Objectives and Constraints for Transonic Wing Optimization

    Get PDF

    When the Truth Is Not Too Hard to Handle: An Event-Related Potential Study on the Pragmatics of Negation

    Get PDF
    Our brains rapidly map incoming language onto what we hold to be true. Yet there are claims that such integration and verification processes are delayed in sentences containing negation words like not. However, studies have often confounded whether a statement is true and whether it is a natural thing to say during normal communication. In an event-related potential (ERP) experiment, we aimed to disentangle effects of truth value and pragmatic licensing on the comprehension of affirmative and negated real-world statements. As in affirmative sentences, false words elicited a larger N400 ERP than did true words in pragmatically licensed negated sentences (e.g., “In moderation, drinking red wine isn't bad/good…”), whereas true and false words elicited similar responses in unlicensed negated sentences (e.g., “A baby bunny's fur isn't very hard/soft…”). These results suggest that negation poses no principled obstacle for readers to immediately relate incoming words to what they hold to be true

    Evidence for increased interferon type I activity in CD8+ T cells in giant cell arteritis patients

    Get PDF
    INTRODUCTION: Giant cell arteritis (GCA) is a vasculitis of the medium- and large-sized arteries. Interferon type I (IFN-I) is increasingly recognized as a key player in autoimmune diseases and might be involved in GCA pathogenesis, however evidence is limited. IFN-I activates Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways, leading to increased expression of interferon stimulated genes. In this study, IFN-I activity in GCA is explored, focusing on CD8+ T cells.METHODS: Expression of phospho-STAT (pSTAT) 1, 3 and 5 was investigated in IFN-α-stimulated peripheral mononuclear cells (PBMCs) gated separately for CD8+ T cells of patients with GCA (n=18), healthy controls (HC, n=15) and infection controls (n=11) by Phosphoflow method combined with fluorescent cell barcoding technique. Furthermore, IFN-I induced myxovirus-resistance protein A (MxA) and CD8+ T cell expression was investigated by immunohistochemistry in temporal artery biopsies (TAB) of GCA patients (n=20) and mimics (n=20), and in aorta tissue of GCA (n=8) and atherosclerosis patients (n=14).RESULTS: pSTAT1 expression was increased in IFN-α stimulated CD8+ T cells from GCA patients, whereas no difference was observed in pSTAT3 and pSTAT5 expression. MxA was present in TABs of 13/20 GCA patients compared to 2/20 mimics and in 8/8 GCA+ compared to 13/14 GCA- aorta tissues. MxA location partially co-localized with CD8+T cells.CONCLUSIONS: Our results provide evidence for increased IFN-I activity in CD8+ T cells of GCA patients, both systemically and locally. These findings warrant further investigation regarding IFN-I induced biomarkers and IFN-I related novel therapeutic options in GCA.</p

    Nanopods: A New Bacterial Structure and Mechanism for Deployment of Outer Membrane Vesicles

    Get PDF
    Background: Bacterial outer membrane vesicles (OMV) are packets of periplasmic material that, via the proteins and other molecules they contain, project metabolic function into the environment. While OMV production is widespread in proteobacteria, they have been extensively studied only in pathogens, which inhabit fully hydrated environments. However, many (arguably most) bacterial habitats, such as soil, are only partially hydrated. In the latter, water is characteristically distributed as films on soil particles that are, on average thinner, than are typical OMV (ca. ≤10 nm water film vs. 20 to >200 nm OMV;). Methodology/Principal Findings: We have identified a new bacterial surface structure, termed a "nanopod", that is a conduit for projecting OMV significant distances (e.g., ≥6 µm) from the cell. Electron cryotomography was used to determine nanopod three-dimensional structure, which revealed chains of vesicles within an undulating, tubular element. By using immunoelectron microscopy, proteomics, heterologous expression and mutagenesis, the tubes were determined to be an assembly of a surface layer protein (NpdA), and the interior structures identified as OMV. Specific metabolic function(s) for nanopods produced by Delftia sp. Cs1-4 are not yet known. However, a connection with phenanthrene degradation is a possibility since nanopod formation was induced by growth on phenanthrene. Orthologs of NpdA were identified in three other genera of the Comamonadaceae family, and all were experimentally verified to form nanopods. Conclusions/Significance: Nanopods are new bacterial organelles, and establish a new paradigm in the mechanisms by which bacteria effect long-distance interactions with their environment. Specifically, they create a pathway through which cells can effectively deploy OMV, and the biological activity these transmit, in a diffusion-independent manner. Nanopods would thus allow environmental bacteria to expand their metabolic sphere of influence in a manner previously unknown for these organisms

    Cellular origin and microRNA profiles of circulating extracellular vesicles in different stages of diabetic nephropathy

    Get PDF
    Background: Diabetic nephropathy (DN) is a major complication of diabetes and the main cause of end-stage renal disease. Extracellular vesicles (EVs) are small cell-derived vesicles that can alter disease progression by microRNA (miRNA) transfer. Methods: In this study, we aimed to characterize the cellular origin and miRNA content of EVs in plasma samples of type 2 diabetes patients at various stages of DN. Type 2 diabetes patients were classified in three groups: normoalbuminuria, microalbuminuria and macroalbuminuria. The concentration and cellular origin of plasma EVs were measured by flow cytometry. A total of 752 EV miRNAs were profiled in 18 subjects and differentially expressed miRNAs were validated. Results: Diabetic patients with microalbuminuria and/or macroalbuminuria showed elevated concentrations of total EVs and EVs from endothelial cells, platelets, leucocytes and erythrocytes compared with diabetic controls. miR-99a-5p was upregulated in macroalbuminuric patients compared with normoalbuminuric and microalbuminuric patients. Transfection of miR-99a-5p in cultured human podocytes downregulated mammalian target of rapamycin (mTOR) protein expression and downregulated the podocyte injury marker vimentin. Conclusions: Type 2 diabetes patients with microalbuminuria and macroalbuminuria display differential EV profiles. miR-99a-5p expression is elevated in EVs from macroalbuminuria and mTOR is its validated mRNA target

    Comparing Diagnostic Performance of Short and Long [18F]FDG-PET Acquisition Times in Giant Cell Arteritis

    Get PDF
    (1) Background: In giant cell arteritis (GCA), the assessment of cranial arteries using [ 18F]fluorodeoxyglucose ([ 18F]FDG) positron emission tomography (PET) combined with low-dose computed tomography (CT) may be challenging due to low image quality. This study aimed to investigate the effect of prolonged acquisition time on the diagnostic performance of [ 18F]FDG PET/CT in GCA. (2) Methods: Patients with suspected GCA underwent [ 18F]FDG-PET imaging with a short acquisition time (SAT) and long acquisition time (LAT). Two nuclear medicine physicians (NMPs) reported the presence or absence of GCA according to the overall image impression (gestalt) and total vascular score (TVS) of the cranial arteries. Inter-observer agreement and intra-observer agreement were assessed. (3) Results: In total, 38 patients were included, of whom 20 were diagnosed with GCA and 18 were without it. Sensitivity and specificity for GCA on SAT scans were 80% and 72%, respectively, for the first NMP, and 55% and 89% for the second NMP. On the LAT scans, these values were 65% and 83%, and 75% and 83%, respectively. When using the TVS, LAT scans showed especially increased specificity (94% for both NMPs). Observer agreement was higher on the LAT scans compared with that on the SAT scan. (4) Conclusions: LAT combined with the use of the TVS may decrease the number of false-positive assessments of [ 18F]FDG PET/CT. Additionally, LAT and TVS may increase both inter and intra-observer agreement. </p

    Perturbation of cytokinin and ethylene-signalling pathways explain the strong rooting phenotype exhibited by Arabidopsis expressing the Schizosaccharomyces pombe mitotic inducer, cdc25

    Get PDF
    Background Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp) cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis. Results Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM) compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased. Conclusions We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over-production. The increased rooting phenotype in Spcdc25 expressing plants is due to an increase in the ratio of endogenous auxin to cytokinin that is known to stimulate an increased rate of lateral root production. Overall, our data reveal important cross talk between cell division and plant growth regulators leading to developmental changes

    Pragmatic skills predict online counterfactual comprehension:Evidence from the N400

    Get PDF
    Counterfactual thought allows people to consider alternative worlds they know to be false. Communicating these thoughts through language poses a social-communicative challenge because listeners typically expect a speaker to produce true utterances, but counterfactuals per definition convey information that is false. Listeners must therefore incorporate overt linguistic cues (subjunctive mood, such as in If I loved you then) in a rapid way to infer the intended counterfactual meaning. The present EEG study focused on the comprehension of such counterfactual antecedents and investigated if pragmatic ability—the ability to apply knowledge of the social-communicative use of language in daily life—predicts the online generation of counterfactual worlds. This yielded two novel findings: (1) Words that are consistent with factual knowledge incur a semantic processing cost, as reflected in larger N400 amplitude, in counterfactual antecedents compared to hypothetical antecedents (If sweets were/are made of sugar). We take this to suggest that counterfactuality is quickly incorporated during language comprehension and reduces online expectations based on factual knowledge. (2) Individual scores on the Autism Quotient Communication subscale modulated this effect, suggesting that individuals who are better at understanding the communicative intentions of other people are more likely to reduce knowledge-based expectations in counterfactuals. These results are the first demonstration of the real-time pragmatic processes involved in creating possible worlds
    corecore