5,656 research outputs found

    Medium effects in the pion pole mechanism (photon photon --> pion-zero --> neutrino-R antineutrino-L (neutrino-L antineutrino-R)) of neutron star cooling

    Full text link
    Nuclear medium effects in the neutrino cooling of neutron stars through the exotic reaction channel \gamma \gamma --> \pi^0--> \nu_R \bar{\nu_L} (\nu_L \bar{\nu_R}) are incorporated. Throughout the paper we discuss different possibilities of right-handed neutrinos, massive left-handed neutrinos and standard massless left-handed neutrinos (reaction is then allowed only with medium modified vertices). It is demonstrated that multi-particle effects suppress the rate of this reaction channel by 6-7 orders of magnitude that does not allow to decrease existing experimental upper limit on the corresponding \pi^0\nu\bar{\nu} coupling. Other possibilities of the manifestation of the given reaction channel in differente physical situations, e.g. in the quark color superconducting cores of some neutron stars, are also discussed. We demonstrate that in the color-flavor-locked superconducting phase for temperatures T < (0.1-10) MeV (depending on the effective pion mass and the decay width) the process is feasibly the most efficient neutrino cooling process, although the absolute value of the reaction is rather small.Comment: Replaced with revised version. New appendix, many clarifying comments, corrected figs 3 and

    A genetic algorithm-assisted semi-adaptive MMSE multi-user detection for MC-CDMA mobile communication systems

    Get PDF
    In this work, a novel Minimum-Mean Squared-Error (MMSE) multi-user detector is proposed for MC-CDMA transmission systems working over mobile radio channels characterized by time-varying multipath fading. The proposed MUD algorithm is based on a Genetic Algorithm (GA)-assisted per-carrier MMSE criterion. The GA block works in two successive steps: a training-aided step aimed at computing the optimal receiver weights using a very short training sequence, and a decision-directed step aimed at dynamically updating the weights vector during a channel coherence period. Numerical results evidenced BER performances almost coincident with ones yielded by ideal MMSE-MUD based on the perfect knowledge of channel impulse response. The proposed GA-assisted MMSE-MUD clearly outperforms state-of-the-art adaptive MMSE receivers based on deterministic gradient algorithms, especially for high number of transmitting users

    Expression of aldehyde dehydrogenase family 1, member A3 in glycogen trophoblast cells of the murine placenta

    Get PDF
    Introduction: Retinoic acid (RA) signaling is a well known regulator of trophoblast differentiation and placental development, and maternal decidual cells are recognized as the source of much of this RA. We explored possible trophoblast-derived sources of RA by examining the expression of RA synthesis enzymes in the developing mouse placenta, as well as addressed potential sites of RA action by examining the ontogeny of gene expression for other RA metabolizing and receptor genes. Furthermore, we investigated the effects of endogenous RA production on trophoblast differentiation

    Theoretical fits of the \delta Cephei light, radius and radial velocity curves

    Full text link
    We present a theoretical investigation of the light, radius and radial velocity variations of the prototype δ\delta Cephei. We find that the best fit model accounts for luminosity and velocity amplitudes with an accuracy better than 0.8σ0.8\sigma, and for the radius amplitude with an accuracy of 1.7σ1.7\sigma. The chemical composition of this model suggests a decrease in both helium (0.26 vs 0.28) and metal (0.01 vs 0.02) content in the solar neighborhood. Moreover, distance determinations based on the fit of light curves agree at the 0.8σ0.8\sigma level with the trigonometric parallax measured by the Hubble Space Telescope (HST). On the other hand, distance determinations based on angular diameter variations, that are independent of interstellar extinction and of the pp-factor value, indicate an increase of the order of 5% in the HST parallax.Comment: accepted for publication on ApJ Letter

    Non-perturbative fixed points and renormalization group improved effective potential

    Get PDF
    The stability conditions of a renormalization group improved effective potential have been discussed in the case of scalar QED and QCD with a colorless scalar. We calculate the same potential in these models assuming the existence of non-perturbative fixed points associated to a conformal phase. In the case of scalar QED the barrier of instability found previously is barely displaced as we approach the fixed point, and in the case of QCD with a colorless scalar not only the barrier is changed but the local minimum of the potential is also changed.Comment: 6 pages, 8 figures, References added. Matching the journal versio

    Scalar coupling evolution in a non-perturbative QCD resummation scheme

    Full text link
    We compute the Standard Model scalar coupling (λ\lambda) evolution in a particular QCD resummation scheme, where the QCD coupling becomes infrared finite due to the presence of a dynamically generated gluon mass, leading to the existence of a non-perturbative infrared fixed point. We discuss how this scheme can be fixed taking recourse to phenomenological considerations in the infrared region. The QCD β\beta function associated to this non-perturbative coupling when introduced into the SM renormalization group equations increases the λ\lambda values at high energies.Comment: 4 pages, 1 figure, The manuscript has been rewritten and quite shortened, one equation corrected, the title has been changed and the conclusions remain the sam
    corecore