33 research outputs found

    Developing biodiversity indicators for african birds

    Get PDF
    Biodiversity indicators are essential for monitoring the impacts of pressures on the state of nature, determining the effectiveness of policy responses, and tracking progress towards biodiversity targets and sustainable development goals. Indicators based on trends in the abundance of birds are widely used for these purposes in Europe and have been identified as priorities for development elsewhere. To facilitate this we established bird population monitoring schemes in three African countries, based on citizen science approaches used in Europe, aiming to monitor population trends in common and widespread species. We recorded > 500 bird species from c. 450 2-km transects in Botswana, > 750 species from c. 120 transects in Uganda, and > 630 species from c. 90 transects in Kenya. Provisional Wild Bird Indices indicate a strong increase in bird populations in Botswana and a small decrease in Uganda. We also provide comparisons between trends of habitat generalists and specialists, of birds within and outside protected areas, and between Afro-Palearctic migrants and resident birds. Challenges encountered included recruiting, training and retaining volunteer surveyors, and securing long-term funding. However, we show that with technical support and modest investment (c. USD 30,000 per scheme per year), meaningful biodiversity indicators can be generated and used in African countries. Sustained resourcing for the existing schemes, and replication elsewhere, would be a cost-effective way to improve our understanding of biodiversity trends globally, and measure progress towards environmental goals

    Fish farming in Tanzania: the availability and nutritive value of local feed ingredients

    Get PDF
    An investigative field survey was performed to gather baseline data on locally available feed ingredients and fish farming practices in different regions of Tanzania. More than 80% of respondents relied on locally available feed ingredients as a major feed supplement for their cultured fish, with maize bran being the most commonly used feed ingredient in all regions. Crude protein content in most analyzed local feed ingredients was medium-high, while crude fat content was high in some animal and agricultural by-products, and medium-low in other ingredients. Most respondents were males and the majority of fish farms were owned by individuals. Earthen pond was the most common fish farming system in all regions except Dar es Salaam. Semi-intensively mixed-sex tilapia monoculture was the dominating fish farming practice. The results of the survey presented provide a good platform for future development of culture systems and feeding strategies for tilapia in Tanzania

    Local selection in the presence of high levels of gene flow: Evidence of heterogeneous insecticide selection pressure across Ugandan Culex quinquefasciatus populations

    Get PDF
    Background: Culex quinquefasciatus collected in Uganda, where no vector control interventions directly targeting this species have been conducted, was used as a model to determine if it is possible to detect heterogeneities in selection pressure driven by insecticide application targeting other insect species. Methodology/Principal findings: Population genetic structure was assessed through microsatellite analysis, and the impact of insecticide pressure by genotyping two target-site mutations, Vgsc-1014F of the voltage-gated sodium channel target of pyrethroid and DDT insecticides, and Ace1-119S of the acetylcholinesterase gene, target of carbamate and organophosphate insecticides. No significant differences in genetic diversity were observed among populations by microsatellite markers with HE ranging from 0.597 to 0.612 and low, but significant, genetic differentiation among populations (FST = 0.019, P = 0.001). By contrast, the insecticide-resistance markers display heterogeneous allelic distributions with significant differences detected between Central Ugandan (urban) populations relative to Eastern and Southwestern (rural) populations. In the central region, a frequency of 62% for Vgsc-1014F, and 32% for the Ace1-119S resistant allele were observed. Conversely, in both Eastern and Southwestern regions the Vgsc-1014F alleles were close to fixation, whilst Ace1-119S allele frequency was 12% (although frequencies may be underestimated due to copy number variation at both loci). Conclusions/Significance: Taken together, the microsatellite and both insecticide resistance target-site markers provide evidence that in the face of intense gene flow among populations, disjunction in resistance frequencies arise due to intense local selection pressures despite an absence of insecticidal control interventions targeting Culex

    Plus- and Minus-End Directed Microtubule Motors Bind Simultaneously to Herpes Simplex Virus Capsids Using Different Inner Tegument Structures

    Get PDF
    Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1) show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during cell entry or to cytoplasmic membranes for envelopment during assembly

    Changes in populations of Weaver Colonies in Kampala Over 20 Years

    No full text
    No Abstract

    The U(L)15 gene of herpes simplex virus type 1 contains within its second exon a novel open reading frame that is translated in frame with the U(L)15 gene product.

    No full text
    The U(L)15 gene of herpes simplex virus type 1 is composed of two exons. A mutation previously shown to preclude viral DNA cleavage and packaging at the nonpermissive temperature was identified as a change from a highly conserved serine to proline at codon 653. Separate viral mutants that contained stop codons inserted into exon I of U(L)15 (designated S648) or an insertion of the Escherichia coli lacZ gene into a truncated U(L)15 exon II [designated HSV-1(delta U(L)15ExII)] were constructed. Recombinant viruses derived from S648 and HSV-1(delta U(L)15ExII) and containing restored U(L)15 genes were constructed and designated S648R and HSV-1(delta U(L)15ExIIR), respectively. Unlike HSV-1(delta U(L)15ExIIR) and S648R, the viruses containing mutant U(L)15 genes failed to cleave and package viral DNA when propagated on noncomplementing cells. As revealed by electron microscopy, large numbers of enveloped capsids lacking viral DNA accumulated within the cytoplasm of cells infected with either S648 or HSV-1(delta U(L)15ExII) but not in cells infected with HSV-1(delta U(L)15ExIIR) or S648R. Thus, one function of the U(L)15 gene is to effectively prevent immature particles lacking DNA from exiting the nucleus by envelopment at the inner lamella of the nuclear membrane. Cells infected with HSV-1(delta U(L)15ExII) did not express the 75,000- or 35,000-apparent-Mr proteins previously shown to be products of the U(L)15 open reading frame, whereas the 35,000-apparent-Mr protein was readily detectable in cells infected with S648. We conclude that at least the 75,000-Mr protein is required for viral DNA cleavage and packaging and hypothesize that the 35,000-Mr protein is derived from translation of a novel mRNA located partially or completely within the second exon of U(L)15

    The UL16 Gene Product of Herpes Simplex Virus 1 Is a Virion Protein That Colocalizes with Intranuclear Capsid Proteins

    Get PDF
    AbstractThe UL16 gene of herpes simplex virus maps within the intron of the UL15 gene. This report shows the following: (i) A polyclonal antiserum directed against a bacterial fusion protein containing glutathioneS-transferase fused to the C-terminus of the UL16 gene reacted with an apparentMr40,000 protein in HSV-1 infected cell lysates. (ii) The protein encoded by UL16 was dependent on viral DNA synthesis for accumulation to detectable levels. (iii) In immunofluorescence studies, the polyclonal UL16/GST-specific antiserum was shown to stain the nucleus of infected cells at 18 hr after infection in areas containing high concentrations of HSV capsid proteins. These nuclear compartments have been described previously as viral assemblons (Wardet al., J. Virol.70, 4623–4631, 1996) and are distinct from compartments containing replicating DNA. Localization within assemblons argues for a role of UL16 encoded protein in capsid assembly or maturation. (iv) At 22 hr after infection, UL16-specific immunofluorescence was present in both the nucleus and the cytoplasm. (v) Consistent with the change in localization at late times after infection, the UL16 protein was found to be a component of purified virions
    corecore