606 research outputs found

    Process modelling for Space Station experiments

    Get PDF
    Examined here is the sensitivity of a variety of space experiments to residual accelerations. In all the cases discussed the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion, or fluid motion must be suppressed or eliminated. In the latter case, the experiments are sensitive to steady and low frequency accelerations. For experiments such as the directional solidification of melts with two or more components, determination of the velocity response alone is insufficient to assess the sensitivity. The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt-crystal interface. As far as the response to transient disturbances is concerned, the sensitivity is determined by both the magnitude and frequency of the acceleration and the characteristic momentum and solute diffusion times. The microgravity environment, a numerical analysis of low gravity tolerance of the Bridgman-Stockbarger technique, and modeling crystal growth by physical vapor transport in closed ampoules are discussed

    NEUROPSYCHIATRIC MANIFESTATIONS OF COLLOID CYSTS: A REVIEW OF THE LITERATURE

    Get PDF
    Colloid cysts account for approximately 2% of primary brain tumours and the majority of cases are identified in the fourth and fifth decade. They are small, gelatinous neoplasms lined by a single layer of mucin-secreting columnar epithelium that are thought to arise from errors in folding of the primitive neuroepithelium. They develop in the rostral aspect of the third ventricle in the foramen of Monro in 99% of cases and despite their benign histology carry a poor prognosis, with a mortality greater than 10% in symptomatic cases. The location of colloid cysts within the ventricular system results in obstruction of the foramen of Monro as the cyst grows, disrupting the circulation of cerebrospinal fluid (CSF) and causing hydrocephalus. This is the mechanism behind the most common presenting symptoms of postural headache, nausea and vomiting - a clinical picture synonymous with hydrocephalus and intracranial pathology. In addition to these classical neurological symptoms, there is a high prevalence of psychiatric symptoms in the patient population, with symptoms ranging from anterograde amnesia to gustatory hallucination. These symptoms can occur with or without the presence of hydrocephalus, and are thought to be secondary to compression of connecting pathways between the mesocortices and subcortical limbic regions. These symptoms have been shown to be comparative in frequency to the classical symptoms, yet are rarely the reason for referral to a neurological or neurosurgical service for investigation

    Characterisation of the Binding Properties of Bacillus Thuringiensis 18 Toxin on Leukaemic Cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various strains of <it>Bacillus thuringiensis </it>(Bt) have been found to produce parasporal proteins that are cytotoxic to human cancer cells. This study aims to establish the binding affinity of purified Bt 18 toxin for CEM-SS (T lymphoblastic leukaemia cell line), to determine if competition exists between the toxin and commercial anticancer drugs for the binding site on CEM-SS and to localise the binding site of the toxin on CEM-SS.</p> <p>Methods</p> <p>In homologous competitive binding study, the purified toxin was labelled with biotin and allowed to compete with unlabelled toxin for binding sites on CEM-SS and its dissociation constant (Kd) was determined. Comparisons were made with CCRF-SB, CCRF-HSB-2 and MCF-7. In heterologous competitive binding study, biotinylated toxin competition was determined with two other Bt toxins (crude Btj and crude Bt 22) and anticancer drugs (cisplatin, doxorubicin, etoposide, navelbine and methotrexate). To localise the binding site under the confocal microscope, the biotinylated toxin was tagged with FITC-conjugated streptavidin.</p> <p>Results</p> <p>Homologous competitive binding assays revealed decreasing binding affinity of Bt 18 toxin for CEM-SS, CCRF-SB, and CCRF-HSB-2 with Kd of 8.44 nM, 14.98 nM and 17.71 nM respectively. Kd for MCF-7 was not determined as the inhibitory concentration (IC<sub>50</sub>) was not reached. Heterologous competitive study showed little competition (< 30%) between biotinylated Bt 18 toxin and all test compounds used. Confocal microscopy revealed binding of toxin at the periphery of the cell.</p> <p>Conclusions</p> <p>It was postulated that purified Bt 18 toxin binds on the cell surface of CEM-SS and the mechanism of cell death may differ from that of Btj toxin, Bt 22 toxin and all five anticancer drugs used in this study, since it did not significantly compete with these compounds for the same binding site.</p

    Rollerball microendoscope for mosaicking in high-resolution oral imaging

    Get PDF
    Only 40% of oral cancers are diagnosed at an early, localized stage, when treatment is most effective [1]. Thus, implementing diagnostic imaging tools for early detection of highgrade dysplasia and cancer may help improve the survival rate of oral cancer patients [2]. The highresolution microendoscope (HRME) is a compact, portable, fiberbased imaging device that can image cell nuclei in tissue labeled with the fluorescent contrast agent proflavine [3]. The HRME allows clinicians to noninvasively image the size, shape and distribution of epithelial cell nuclei in vivo, enabling realtime evaluation of potentially neoplastic lesions [3]. The primary limitation of the HRME is the small field of view of its fiber probe (720 μm), which makes it timeconsuming to examine large areas of tissue. Mosaicking algorithms have previously been implemented to allow realtime generation of image mosaics during HRME imaging, thus interrogating a larger field of view than the fiber probe’s diameter [4]. However, this approach has had limited success in vivo due to the practical difficulty of translating the fiber probe across the tissue in a smooth, controlled manner in order for the mosaicking software to function properly. Here we report the construction and initial testing of a rollerball HRME probe that permits smooth, rolling translation across the tissue surface while maintaining image quality with subcellular resolution. The rollerball HRME consists of a standard HRME probe interfaced with a rollerball mechanism. The mechanism is composed of two 5mm sapphire ball lenses enclosed within a 3D printed penlike casing. The ball lenses serve as an optical relay, while the distal ball lens also serves as a rolling contact point with the tissue surface. Figure 1 shows the use of the rollerball HRME to generate a realtime mosaic of a calibration target (field finder slide) as it rolls across the surface of the target. Figure 2 shows the use of the rollerball HRME to generate a realtime mosaic showing cell nuclei on the lateral tongue of a healthy volunteer as it rolls across the tissue surface. The rollerball HRME will allow clinicians to more rapidly examine large areas of tissue with subcellular resolution, potentially aiding in the early detection of highgrade oral dysplasia and cance. Please click Additional Files below to see the full abstract

    Cryogenic platform for coupling color centers in diamond membranes to a fiber-based microcavity

    Get PDF
    We operate a fiber-based cavity with an inserted diamond membrane containing ensembles of silicon vacancy centers (SiV^{-}) at cryogenic temperatures ≥4 K. The setup, sample fabrication and spectroscopic characterization are described, together with a demonstration of the cavity influence by the Purcell effect. This paves the way towards solid-state qubits coupled to optical interfaces as long-lived quantum memories

    Simple bounds on limit loads by elastic finite element analysis”, ASME,

    Get PDF
    A method for bounding limit loads by an iterative elastic continuum finite element analysis procedure, referred to as the elastic compensation method, is proposed. A number of sample problems are considered, based on both exact solutions and finite element analysis, and it is concluded that the method may be used to obtain limitload bounds for pressure vessel design by analysis applications with useful accuracy

    Cryogenic platform for coupling color centers in diamond membranes to a fiberbased microcavity

    Get PDF
    We operate a fiberbased cavity with an inserted diamond membrane containing ensembles of silicon vacancy centers (SiV^-) at cryogenic temperatures 4  \geq4~K. The setup, sample fabrication and spectroscopic characterization is described, together with a demonstration of the cavity influence by the Purcell effect. This paves the way towards solid state qubits coupled to optical interfaces as long-lived quantum memories.Comment: 10 pages, 6 figure
    corecore