7,126 research outputs found

    Opening the Rome-Southampton window for operator mixing matrices

    Full text link
    We show that the running of operators which mix under renormalization can be computed fully non-perturbatively as a product of continuum step scaling matrices. These step scaling matrices are obtained by taking the "ratio" of Z matrices computed at different energies in an RI-MOM type scheme for which twisted boundary conditions are an essential ingredient. Our method allows us to relax the bounds of the Rome-Southampton window. We also explain why such a method is important in view of the light quark physics program of the RBC-UKQCD collaborations. To illustrate our method, using n_f=2+1 domain-wall fermions, we compute the non-perturbative running matrix of four-quark operators needed in K->pipi decay and neutral kaon mixing. Our results are then compared to perturbation theory.Comment: 8 pages, 7 figures. v2: PRD version, minor changes and few references adde

    The kaon semileptonic form factor in Nf=2+1 domain wall lattice QCD with physical light quark masses

    Full text link
    We present the first calculation of the kaon semileptonic form factor with sea and valence quark masses tuned to their physical values in the continuum limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of simulations at the phenomenologically convenient point of zero momentum transfer in large physical volumes and for two different values of the lattice spacing. Our prediction for the form factor is f+(0)=0.9685(34)(14) where the first error is statistical and the second error systematic. This result can be combined with experimental measurements of K->pi decays for a determination of the CKM-matrix element for which we predict |Vus|=0.2233(5)(9) where the first error is from experiment and the second error from the lattice computation.Comment: 21 pages, 7 figures, 6 table

    QSO clustering and the AAT 2dF redshift survey

    Full text link
    We review previous results on the clustering and environments of QSOs. We show that the correlation length for QSOs derived from existing surveys is r~5/h Mpc, similar to the observed correlation length for field galaxies at the present epoch. The galaxy environment for z<1 radio-quiet QSOs is also consistent with field galaxies. The evolution of the QSO correlation length with redshift is currently uncertain, largely due to the small numbers of QSOs (~2000) in surveys suitable for clustering analysis. We report on intial progress with the AAT 2dF QSO redshift survey, which, once completed will comprise almost 30000 QSOs. With over 1000 QSOs already observed, it is already the largest single homogeneous QSO survey. We discuss prospects for deriving limits on cosmological parameters from this survey, and on the evolution of large-scale structure in the Universe.Comment: Invited talk at RS meeting on 'Large Scale Structure in the Universe' held at the Royal Society on 25-26 March 1998 14 pages, 11 figre

    Lattice determination of the K(ππ)I=2K \to (\pi\pi)_{I=2} Decay Amplitude A2A_2

    Full text link
    We describe the computation of the amplitude A_2 for a kaon to decay into two pions with isospin I=2. The results presented in the letter Phys.Rev.Lett. 108 (2012) 141601 from an analysis of 63 gluon configurations are updated to 146 configurations giving ReA2=1.381(46)stat(258)syst108A_2=1.381(46)_{\textrm{stat}}(258)_{\textrm{syst}} 10^{-8} GeV and ImA2=6.54(46)stat(120)syst1013A_2=-6.54(46)_{\textrm{stat}}(120)_{\textrm{syst}}10^{-13} GeV. ReA2A_2 is in good agreement with the experimental result, whereas the value of ImA2A_2 was hitherto unknown. We are also working towards a direct computation of the K(ππ)I=0K\to(\pi\pi)_{I=0} amplitude A0A_0 but, within the standard model, our result for ImA2A_2 can be combined with the experimental results for ReA0A_0, ReA2A_2 and ϵ/ϵ\epsilon^\prime/\epsilon to give ImA0/A_0/ReA0=1.61(28)×104A_0= -1.61(28)\times 10^{-4} . Our result for Im\,A2A_2 implies that the electroweak penguin (EWP) contribution to ϵ/ϵ\epsilon^\prime/\epsilon is Re(ϵ/ϵ)EWP=(6.25±0.44stat±1.19syst)×104(\epsilon^\prime/\epsilon)_{\mathrm{EWP}} = -(6.25 \pm 0.44_{\textrm{stat}} \pm 1.19_{\textrm{syst}}) \times 10^{-4}.Comment: 59 pages, 11 figure

    A Morphological and Multicolor Survey for Faint QSOs in the Groth-Westphal Strip

    Get PDF
    Quasars representative of the populous faint end of the luminosity function are frustratingly dim with m~24 at intermediate redshift; moreover groundbased surveys for such faint QSOs suffer substantial morphological contamination by compact galaxies having similar colors. In order to establish a more reliable ultrafaint QSO sample, we used the APO 3.5-m telescope to take deep groundbased U-band CCD images in fields previously imaged in V,I with WFPC2/HST. Our approach hence combines multicolor photometry with the 0.1" spatial resolution of HST, to establish a morphological and multicolor survey for QSOs extending about 2 magnitudes fainter than most extant groundbased surveys. We present results for the "Groth-Westphal Strip", in which we identify 10 high likelihood UV-excess candidates having stellar or stellar-nucleus+galaxy morphology in WFPC2. For m(606)<24.0 (roughly B<24.5) the surface density of such QSO candidates is 420 (+180,-130) per square degree, or a surface density of 290 (+160,-110) per square degree with an additional V-I cut that may further exclude compact emission line galaxies. Even pending confirming spectroscopy, the observed surface density of QSO candidates is already low enough to yield interesting comparisons: our measures agree extremely well with the predictions of several recent luminosity function models.Comment: 29 pages including 6 tables and 7 figures. As accepted for publication in The Astronomical Journal (minor revisions

    Standard-model prediction for direct CP violation in KππK\to\pi\pi decay

    Get PDF
    We report the first lattice QCD calculation of the complex kaon decay amplitude A0A_0 with physical kinematics, using a 323×6432^3\times 64 lattice volume and a single lattice spacing aa, with 1/a=1.3784(68)1/a= 1.3784(68) GeV. We find Re(A0)=4.66(1.00)(1.26)×107(A_0) = 4.66(1.00)(1.26) \times 10^{-7} GeV and Im(A0)=1.90(1.23)(1.08)×1011(A_0) = -1.90(1.23)(1.08) \times 10^{-11} GeV, where the first error is statistical and the second systematic. The first value is in approximate agreement with the experimental result: Re(A0)=3.3201(18)×107(A_0) = 3.3201(18) \times 10^{-7} GeV while the second can be used to compute the direct CP violating ratio Re(ε/ε)=1.38(5.15)(4.59)×104(\varepsilon'/\varepsilon)=1.38(5.15)(4.59)\times 10^{-4}, which is 2.1σ2.1\sigma below the experimental value 16.6(2.3)×10416.6(2.3)\times 10^{-4}. The real part of A0A_0 is CP conserving and serves as a test of our method while the result for Re(ε/ε)(\varepsilon'/\varepsilon) provides a new test of the standard-model theory of CP violation, one which can be made more accurate with increasing computer capability.Comment: 9 pages, 3 figures. Updated to match published versio
    corecore