2,138 research outputs found
Development of real-time PCR and hybridization methods for detection and identification of thermophilic Campylobacter spp. in pig faecal samples
Aims: To develop a real-time (rt) PCR for species differentiation of thermophilic Campylobacter and to develop a method for assessing co-colonization of pigs by Campylobacter spp.
Methods and results: The specificity of a developed 5’nuclease rt-PCR for species-specific identification of C. jejuni, C. coli, C. lari, C. upsaliensis and of a hipO gene nucleotide probe for detection of C. jejuni by colony-blot hybridization were determined by testing a total of 75 reference strains of Campylobacter spp. and related organisms. The rt-PCR method allowed species-specific detection of Campylobacter spp. in naturally infected pig faecal samples after an enrichment step, whereas the hybridization approach enhanced the specific isolation of C. jejuni (present in minority to C. coli) from pigs.
Conclusions: The rt-PCR was specific for Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis and the colony-blot hybridization approach provided an effective tool for isolation of C. jejuni from pig faecal samples typically dominated by C. coli.
Significance and impact of study: Species differentiation between thermophilic Campylobacter is difficult by phenotypic methods and the developed rt-PCR provides an easy and fast method for such differentiation. Detection of C. jejuni by colony hybridization may increase the isolation rate of this species from pig feces
Multi-mode density matrices of light via amplitude and phase control
A new method is described for determining the quantum state of correlated
multimode radiation by interfering the modes and measuring the statistics of
the superimposed fields in four-port balanced homodyne detection. The full
information on the -mode quantum state is obtained by controlling both the
relative amplitudes and the phases of the modes, which simplifies the
reconstruction of density matrices to only Fourier transforms. In
particular, this method yields time-correlated multimode density matrices of
optical pulses by superimposing the signal by a sequence of short
local-oscillator pulses.Comment: 6 pages, late
Bitwise Bell inequality violations for an entangled state involving 2N ions
Following on from previous work [J. A. Larsson, Phys. Rev. A 67, 022108
(2003)], Bell inequalities based on correlations between binary digits are
considered for a particular entangled state involving 2N trapped ions. These
inequalities involve applying displacement operations to half of the ions and
then measuring correlations between pairs of corresponding bits in the binary
representations of the number of centre-of-mass phonons of N particular ions.
It is shown that the state violates the inequalities and thus displays
nonclassical correlations. It is also demonstrated that it violates a Bell
inequality when the displacements are replaced by squeezing operations.Comment: 12 pages, 5 figures, accepted for publication in Phys. Rev.
Mesoporous hexagonal Co<inf>3</inf>O<inf>4</inf> for high performance lithium ion batteries
© 2014 Macmillan Publishers Limited. Mesoporous Co3O4 nanoplates were successfully prepared by the conversion of hexagonal β-Co(OH) 2 nanoplates. TEM, HRTEM and N2 sorption analysis confirmed the facet crystal structure and inner mesoporous architecture. When applied as anode materials for lithium storage in lithium ion batteries, mesoporous Co3O4 nanocrystals delivered a high specific capacity. At 10 C current rate, as-prepared mesoporous Co3O4 nanoplates delivered a specific capacity of 1203 mAh/g at first cycle and after 200 cycles it can still maintain a satisfied value (330 mAh/g). From ex-situ TEM, SAED and FESEM observation, it was found that mesoporous Co3O4 nanoplates were reduced to Li2O and Co during the discharge process and re-oxidised without losing the mesoporous structure during charge process. Even after 100 cycles, mesoporous Co3O4 crystals still preserved their pristine hexagonal shape and mesoporous nanostructure
Magnetic field processing to enhance critical current densities of MgB2 superconductors
Magnetic field of up to 12 T was applied during the sintering process of pure
MgB2 and carbon nanotube (CNT) doped MgB2 wires. We have demonstrated that
magnetic field processing results in grain refinement, homogeneity and
significant enhancement in Jc(H) and Hirr. The Jc of pure MgB2 wire increased
by up to a factor of 3 to 4 and CNT doped MgB2 by up to an order of magnitude
in high field region respectively, compared to that of the non-field processed
samples. Hirr for CNT doped sample reached 7.7 T at 20 K. Magnetic field
processing reduces the resistivity in CNT doped MgB2, straightens the entangled
CNT and improves the adherence between CNTs and MgB2 matrix. No crystalline
alignment of MgB2 was observed. This method can be easily scalable for a
continuous production and represents a new milestone in the development of MgB2
superconductors and related systems
Operational Theory of Homodyne Detection
We discuss a balanced homodyne detection scheme with imperfect detectors in
the framework of the operational approach to quantum measurement. We show that
a realistic homodyne measurement is described by a family of operational
observables that depends on the experimental setup, rather than a single field
quadrature operator. We find an explicit form of this family, which fully
characterizes the experimental device and is independent of a specific state of
the measured system. We also derive operational homodyne observables for the
setup with a random phase, which has been recently applied in an ultrafast
measurement of the photon statistics of a pulsed diode laser. The operational
formulation directly gives the relation between the detected noise and the
intrinsic quantum fluctuations of the measured field. We demonstrate this on
two examples: the operational uncertainty relation for the field quadratures,
and the homodyne detection of suppressed fluctuations in photon statistics.Comment: 7 pages, REVTe
Characterisations of Classical and Non-classical states of Quantised Radiation
A new operator based condition for distinguishing classical from
non-classical states of quantised radiation is developed. It exploits the fact
that the normal ordering rule of correspondence to go from classical to quantum
dynamical variables does not in general maintain positivity. It is shown that
the approach naturally leads to distinguishing several layers of increasing
nonclassicality, with more layers as the number of modes increases. A
generalisation of the notion of subpoissonian statistics for two-mode radiation
fields is achieved by analysing completely all correlations and fluctuations in
quadratic combinations of mode annihilation and creation operators conserving
the total photon number. This generalisation is nontrivial and intrinsically
two-mode as it goes beyond all possible single mode projections of the two-mode
field. The nonclassicality of pair coherent states, squeezed vacuum and
squeezed thermal states is analysed and contrasted with one another, comparing
the generalised subpoissonian statistics with extant signatures of nonclassical
behaviour.Comment: 16 pages, Revtex, One postscript Figure compressed and uuencoded
Replaced, minor changes in eq 4.30 and 4.32. no effect on the result
- …
