1,214 research outputs found
Cellular Flame Instabilities
The onset of Darrieus Landau and thermo-diffusive instabilities in an exploding spherical laminar flame is marked by the value of the Peclet number, Pecl, which is dependent upon the Markstein number. Values of Pecl for a number of different mixtures have been measured at 0.5 and 1.0 MPa in a spherical explosion bomb. These values are presented as a function of the flame speed Markstein number, Mab, and it is found that neither different pressures nor the different mixtures have a great effect on this correlation. Values derived from much larger scale atmospheric explosions of methane/air and propane/air also closely follow the same correlation. This suggests data from high pressure laboratory explosions might be used to predict the effects of large scale atmospheric explosions. Findings from other workers follow the same trend, although different detailed results can arise from both different definitions of Markstein number, and different measurement techniques. Because of the importance of a necessary minimal stretch rate to stabilise a flame, a more logical and fundamental criterion for the onset of this type of instability is one based on the flame stretch rate, such as a critical Karlovitz stretch factor, Kcl. As a result, the correlations are also expressed in terms of Kcl, instead of Pecl. As Masr becomes highly negative, the regime of stability is severely reduced
Burning Velocity and Markstein Length Blending Laws for Methane/Air and Hydrogen/Air Blends
Because of the contrasting chemical kinetics of methane and hydrogen combustion, the development of blending laws for laminar burning velocity, ul, and Markstein length for constituent mixtures of CH4/air and H2/air presents a formidable challenge. Guidance is sought through a study of analytical expressions for laminar burning velocity. For the prediction of burning velocities of blends, six blending laws were scrutinised. The predictions were compared with the measured burning velocities made by Hu et al. under atmospheric conditions [1]. These covered equivalence ratios ranging from 0.6 to 1.3, and the full fuel range for H2 addition to CH4. This enabled assessments to be made of the predictive accuracy of the six laws. The most successful law is one developed in the course of the present study, involving the mass fraction weighting of the product of ul, density, heat of reaction and specific heat, divided by the thermal conductivity of the mixture. There was less success from attempts to obtain a comparably successful blending law for the flame speed Markstein length, Lb, despite scrutiny of several possibilities. Details are given of two possible approaches, one based on the fractional mole concentration of the deficient reactant. A satisfactory empirical law employs mass fraction weighting of the product ulLb
A remote sensing method for resolving depth and subpixel composition of aquatic benthos
The problem of subpixel heterogeneity in cover types has been addressed in terrestrial environments by the application of linear spectral unmixing techniques. However, in aquatic systems the interceding depth of water causes the apparent reflectance of the substrate to diverge from a linear model, and if depth is unknown these methods cannot be applied. A new technique is presented in which the conventional spectral unmixing method has been modified to calculate depth at each pixel in addition to the proportions of substrate type. The technique requires knowledge of the reflectance spectra of m pure substrata in n (n > m) spectral bands at depth 0 and the water diffuse attenuation coefficients for the site in the same bands. Depth, z, can be entirely unknown. The method is comparable to "classical" spectral unmixing and proceeds by performing a Gaussian elimination for endmember quantities and then solving the remaining nonlinear function of z for f(z) = 0 by successive approximation. Computer-based models are used to test the technique with realistic water diffuse attenuation coefficients and random spectra and actual spectra of coral reef substrata. The robustness of the technique is assessed against three forms of introduced error: measurement errors on the spectra to be unmixed, differences between the true endmember spectra and those used in the analysis, and measurement error on the water diffuse attenuation coefficients. The results of these tests imply the technique is sufficiently robust for use on real data. Furthermore, spectral unmixing of aquatic systems appears to be relatively insensitive to inaccuracies in depth estimation and offers great utility for benthic mapping
Recommended from our members
Acoustic cues to individuality in wild male adult African savannah elephants (Loxodonta africana).
The ability to recognize conspecifics plays a pivotal role in animal communication systems. It is especially important for establishing and maintaining associations among individuals of social, long-lived species, such as elephants. While research on female elephant sociality and communication is prevalent, until recently male elephants have been considered far less social than females. This resulted in a dearth of information about their communication and recognition abilities. With new knowledge about the intricacies of the male elephant social structure come questions regarding the communication basis that allows for social bonds to be established and maintained. By analyzing the acoustic parameters of social rumbles recorded over 1.5 years from wild, mature, male African savanna elephants (Loxodonta africana) we expand current knowledge about the information encoded within these vocalizations and their potential to facilitate individual recognition. We showed that social rumbles are individually distinct and stable over time and therefore provide an acoustic basis for individual recognition. Furthermore, our results revealed that different frequency parameters contribute to individual differences of these vocalizations
Acoustic cues to individuality in wild male adult African savannah elephants (Loxodonta africana)
The ability to recognize conspecifics plays a pivotal role in animal communication systems. It is especially important for establishing and maintaining associations among individuals of social, long-lived species, such as elephants. While research on female elephant sociality and communication is prevalent, until recently male elephants have been considered far less social than females. This resulted in a dearth of information about their communication and recognition abilities. With new knowledge about the intricacies of the male elephant social structure come questions regarding the communication basis that allows for social bonds to be established and maintained. By analyzing the acoustic parameters of social rumbles recorded over 1.5 years from wild, mature, male African savanna elephants (Loxodonta africana) we expand current knowledge about the information encoded within these vocalizations and their potential to facilitate individual recognition. We showed that social rumbles are individually distinct and stable over time and therefore provide an acoustic basis for individual recognition. Furthermore, our results revealed that different frequency parameters contribute to individual differences of these vocalizations
Mining morphometrics and age from past survey photographs
Abstract
Background
Researchers often document wildlife surveys using images. These images contain data that can be used to understand alterative research objectives, even years after they were originally captured. We have developed a method to measure age and morphology (body size measurements and tusk size) from survey image databases and future surveys, without the availability of a known subject distance or a scale in each image. African savanna elephants (Loxodonta africana) serve as an ideal model species to develop a non-invasive, image-based morphometric methodology: as handling these animals is particularly invasive and expensive, involving anaesthesia and because of their IUCN ‘vulnerable’ status. We compare in situ measurements, taken during collaring events, to tusk-to-body-size ratios, measured from the images.
Results
We provide evidence that relative morphological measurements, musth timing, and age of male African savanna elephants can accurately be obtained from a survey image database of over 30,000 images, taken over an 18-year period. Of the 11 tusk to body size ratios calculated, we recommend the use of two in particular for future measurement in African elephants to determine size and age: 1) tusk length to tusk diameter and 2) tusk length to body height.
Conclusions
We present a practical, non-invasive measure to estimate morphometrics, including both age and tusk size from photographs, which has conservation applications to the protection of elephants and is relevant to a range of other taxa
Mining morphometrics and age from past survey photographs
Background
Researchers often document wildlife surveys using images. These images contain data that can be used to understand alterative research objectives, even years after they were originally captured. We have developed a method to measure age and morphology (body size measurements and tusk size) from survey image databases and future surveys, without the availability of a known subject distance or a scale in each image. African savanna elephants (Loxodonta africana) serve as an ideal model species to develop a non-invasive, image-based morphometric methodology: as handling these animals is particularly invasive and expensive, involving anaesthesia and because of their IUCN ‘vulnerable’ status. We compare in situ measurements, taken during collaring events, to tusk-to-body-size ratios, measured from the images.
Results
We provide evidence that relative morphological measurements, musth timing, and age of male African savanna elephants can accurately be obtained from a survey image database of over 30,000 images, taken over an 18-year period. Of the 11 tusk to body size ratios calculated, we recommend the use of two in particular for future measurement in African elephants to determine size and age: 1) tusk length to tusk diameter and 2) tusk length to body height.
Conclusions
We present a practical, non-invasive measure to estimate morphometrics, including both age and tusk size from photographs, which has conservation applications to the protection of elephants and is relevant to a range of other taxa
Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems
Small-scale experiments and theory suggest that ecological functions provided by communities become more stable with increased species richness. Whether these patterns manifest at regional spatial scales and within species-rich communities (e.g., coral reefs) is largely unknown. We quantified five biogeochemical processes, and an aggregate measure of multifunctionality, in species-rich coastal fish communities to test three questions: (1) Do previously predicted biodiversity-ecosystem-function relationships hold across large spatial scales and in highly diverse communities? (2) Can additional covariates of community structure improve these relationships? (3) What is the role of community biomass and functional group diversity in maintaining biogeochemical processes under various scenarios of species loss across ecosystem types? These questions were tested across a large regional gradient of coral reef, mangrove and seagrass ecosystems. Statistical models demonstrated that species richness and the mean maximum body size per species strongly predicted biogeochemical processes in all ecosystem types, but functional group diversity was only a weak predictor. Simulating three scenarios of species loss demonstrated that conserving community biomass alone increased the ability for communities to maintain ecosystem processes. Multifunctionality of biogeochemical processes was maintained least in simulations that conserved biomass and community structure, underscoring the relative lack of importance of community structure in maintaining multiple simultaneous ecosystem functions in this system. Findings suggest that conserving community biomass alone may be sufficient to sustain certain biogeochemical processes, but when considering conservation of multiple simultaneous biogeochemical processes, management efforts should focus first on species richness
Parasite-associated mortality in a long-lived mammal: Variation with host age, sex, and reproduction.
Parasites can cause severe host morbidity and threaten survival. As parasites are generally aggregated within certain host demographics, they are likely to affect a small proportion of the entire population, with specific hosts being at particular risk. However, little is known as to whether increased host mortality from parasitic causes is experienced by specific host demographics. Outside of theoretical studies, there is a paucity of literature concerning dynamics of parasite-associated host mortality. Empirical evidence mainly focuses on short-lived hosts or model systems, with data lacking from long-lived wild or semi-wild vertebrate populations. We investigated parasite-associated mortality utilizing a multigenerational database of mortality, health, and reproductive data for over 4,000 semi-captive timber elephants (Elephas maximus), with known causes of death for mortality events. We determined variation in mortality according to a number of host traits that are commonly associated with variation in parasitism within mammals: age, sex, and reproductive investment in females. We found that potentially parasite-associated mortality varied significantly across elephant ages, with individuals at extremes of lifespan (young and old) at highest risk. Mortality probability was significantly higher for males across all ages. Female reproducers experienced a lower probability of potentially parasite-associated mortality than females who did not reproduce at any investigated time frame. Our results demonstrate increased potentially parasite-associated mortality within particular demographic groups. These groups (males, juveniles, elderly adults) have been identified in other studies as susceptible to parasitism, stressing the need for further work investigating links between infection and mortality. Furthermore, we show variation between reproductive and non-reproductive females, with mothers being less at risk of potentially parasite mortality than nonreproducers
- …