1,541 research outputs found
Coherent coupling between surface plasmons and excitons in semiconductor nanocrystals
We present an experimental demonstration of strong coupling between a surface
plasmon propagating on a planar silver substrate, and the lowest excited state
of CdSe nanocrystals. Variable-angle spectroscopic ellipsometry measurements
demonstrated the formation of plasmon-exciton mixed states, characterized by a
Rabi splitting of 82 meV at room temperature. Such a coherent
interaction has the potential for the development of plasmonic non-linear
devices, and furthermore, this system is akin to those studied in cavity
quantum electrodynamics, thus offering the possibility to study the regime of
strong light-matter coupling in semiconductor nanocrystals at easily accessible
experimental conditions.Comment: 12 pages, 4 figure
Pursuing Clean Energy Equitably
This is the final version of the report. Available from the publisher via the URL in this record.This paper explores the opportunities for a ‘just transition’ to low carbon and sustainable energy systems; one that addresses the current inequities in the distribution of energy benefits and their human and ecological costs. In order to prioritize policies that address energy poverty alleviation and sustainability concerns, national action and higher levels of international cooperation and coordination are required to steer public policy towards a broader range of public interests. This also implies re-directing the vast sums of private energy finance that currently serve a narrow set of interests. This paper considers how national and global energy governance must adapt and change to ensure a just transition to low carbon and sustainable energy systems. Creating a low carbon and sustainable energy transition will face significant challenges in overcoming
opposition from a broad array of interest groups. The challenges of guiding a just transition are amplified by the relinquishing of government control over the energy sector in many countries and the current weak and fragmented state of global energy governance. The necessary changes in energy decision making will entail complex trade-offs and rebound effects that make strong, participatory and transparent institutional arrangements essential in order to govern such challenges equitably. In this respect, procedural justice is critical to achieving distributive justice and to creating a simultaneously rapid, sustainable and equitable transition to clean energy futures
An examination of the precipitation delivery mechanisms for Dolleman Island, eastern Antarctic Peninsula
Copyright @ 2004 Wiley-BlackwellThe variability of size and source of significant precipitation events were studied at an Antarctic ice core drilling site: Dolleman Island (DI), located on the eastern coast of the Antarctic Peninsula. Significant precipitation events that occur at DI were temporally located in the European Centre for Medium-Range Weather Forecasting (ECMWF) reanalysis data set, ERA-40. The annual and summer precipitation totals from ERA-40 at DI both show significant increases over the reanalysis period. Three-dimensional backwards air parcel trajectories were then run for 5 d using the ECMWF ERA-15 wind fields. Cluster analyses were performed on two sets of these backwards trajectories: all days in the range 1979–1992 (the climatological time-scale) and a subset of days when a significant precipitation event occurred. The principal air mass sources and delivery mechanisms were found to be the Weddell Sea via lee cyclogenesis, the South Atlantic when there was a weak circumpolar trough (CPT) and the South Pacific when the CPT was deep. The occurrence of precipitation bearing air masses arriving via a strong CPT was found to have a significant correlation with the southern annular mode (SAM); however, the arrival of air masses from the same region over the climatological time-scale showed no such correlation. Despite the dominance in both groups of back trajectories of the westerly circulation around Antarctica, some other key patterns were identified. Most notably there was a higher frequency of lee cyclogenesis events in the significant precipitation trajectories compared to the climatological time-scale. There was also a tendency for precipitation trajectories to come from more northerly latitudes, mostly from 50–70°S. The El Niño Southern Oscillation (ENSO) was found to have a strong influence on the mechanism by which the precipitation was delivered; the frequency of occurrence of precipitation from the east (west) of DI increased during El Niño (La Niña) events
Titanium dioxide based 64° YX LiNbO3 surface acoustic wave hydrogen gas sensors
Amorphous titanium dioxide (TiO2) and gold (Au) doped TiO2-based surface acoustic wave (SAW) sensors have been investigated
as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route,mixing a Ti-butoxide-based
solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64\ub0 YX LiNbO3 SAWtransducers
in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and 310 \ub0C. It was found that
gold doping on TiO2 increased the device sensitivity and reduced the optimum operating temperature
Titanium dioxide-based 64 degrees YX LiNbO3 surface acoustic wave hydrogen gas sensors
Amorphous titanium dioxide (TiO2) and gold (Au) doped TiO2-based surface acoustic wave (SAW) sensors have been investigated as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64° YX LiNbO3 SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and 310°C. It was found that gold doping on TiO2 increased the device sensitivity and reduced the optimum operating temperature
Monitoring Ion Channel Function In Real Time Through Quantum Decoherence
In drug discovery research there is a clear and urgent need for non-invasive
detection of cell membrane ion channel operation with wide-field capability.
Existing techniques are generally invasive, require specialized nano
structures, or are only applicable to certain ion channel species. We show that
quantum nanotechnology has enormous potential to provide a novel solution to
this problem. The nitrogen-vacancy (NV) centre in nano-diamond is currently of
great interest as a novel single atom quantum probe for nanoscale processes.
However, until now, beyond the use of diamond nanocrystals as fluorescence
markers, nothing was known about the quantum behaviour of a NV probe in the
complex room temperature extra-cellular environment. For the first time we
explore in detail the quantum dynamics of a NV probe in proximity to the ion
channel, lipid bilayer and surrounding aqueous environment. Our theoretical
results indicate that real-time detection of ion channel operation at
millisecond resolution is possible by directly monitoring the quantum
decoherence of the NV probe. With the potential to scan and scale-up to an
array-based system this conclusion may have wide ranging implications for
nanoscale biology and drug discovery.Comment: 7 pages, 6 figure
Real-time diagnostics of gas/water assisted injection moulding using integrated ultrasonic sensors
YesAn ultrasound sensor system has been applied to the mould of both the water and gas assisted
injection moulding processes. The mould has a cavity wall mounted pressure sensor and instrumentation to
monitor the injection moulding machine. Two ultrasound sensors are used to monitor the arrival of the fluid
(gas or water) bubble tip through the detection of reflected ultrasound energy from the fluid polymer
boundary and the fluid bubble tip velocity through the polymer melt is estimated. The polymer contact with
the cavity wall is observed through the reflected ultrasound energy from that boundary. A theoretically
based estimation of the residual wall thickness is made using the ultrasound reflection from the fluid (gas or
water) polymer boundary whilst the samples are still inside the mould and a good correlation with a physical
measurement is observed
- …
