7,273 research outputs found
A plan for spacecraft automated rendezvous
An automated rendezvous approach has been developed that utilizes advances in technology to reduce real-time/near real-time flight operations support personnel to an acceptable level that is near the minimum without jeopardizing the success of the mission. The on-board flight targeting uses a rule-based system to select the pursuit vehicle phasing orbits and uses precise navigation updates from the pursuit/target spacecraft made possible by the global positioning system receivers/processors on both spacecraft to adjust the phasing orbits and achieve rendezvous. The ascent-to-orbit targeting for the pursuit vehicle has been successfully decoupled from the on-orbit orbit transfer phasing targeting. Typical launch window data have been developed for the heavy lift launch vehicle and cargo transfer vehicle for a Space Station Freedom rendezvous mission
Immiscible fluid: Heat of fusion heat storage system
Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration
WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation.
WASP-family proteins are known to promote assembly of branched actin networks by stimulating the filament-nucleating activity of the Arp2/3 complex. Here, we show that WASP-family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP-family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline-rich sequence that binds profilin-actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline-rich sequences are required to support polymerase activity by (i) bringing polymerization-competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin-actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP-family proteins that create it. Collaboration between WH2 and proline-rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP-family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation
An Energy and Performance Exploration of Network-on-Chip Architectures
In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs
Lattice Model of Sweeping Interface for Drying Process in Water-Granule Mixture
Based on the invasion percolation model, a lattice model for the sweeping
interface dynamics is constructed to describe the pattern forming process by a
sweeping interface upon drying the water-granule mixture. The model is shown to
produce labyrinthine patterns similar to those found in the experiment[Yamazaki
and Mizuguchi, J. Phys. Soc. Jpn. \textbf{69} (2000) 2387]. Upon changing the
initial granular density, resulting patterns undergo the percolation
transition, but estimated critical exponents are different from those of the
conventional percolation. Loopless structure of clusters in the patterns
produced by the sweeping dynamics seems to influence the nature of the
transition.Comment: 6 pages, 7 figure
Scheduling aircraft landings - the static case
This is the publisher version of the article, obtained from the link below.In this paper, we consider the problem of scheduling aircraft (plane) landings at an airport. This problem is one of deciding a landing time for each plane such that each plane lands within a predetermined time window and that separation criteria between the landing of a plane and the landing of all successive planes are respected. We present a mixed-integer zero–one formulation of the problem for the single runway case and extend it to the multiple runway case. We strengthen the linear programming relaxations of these formulations by introducing additional constraints. Throughout, we discuss how our formulations can be used to model a number of issues (choice of objective function, precedence restrictions, restricting the number of landings in a given time period, runway workload balancing) commonly encountered in practice. The problem is solved optimally using linear programming-based tree search. We also present an effective heuristic algorithm for the problem. Computational results for both the heuristic and the optimal algorithm are presented for a number of test problems involving up to 50 planes and four runways.J.E.Beasley. would like to acknowledge the financial support of the Commonwealth Scientific and Industrial Research Organization, Australia
Observation of Weak-Limit Quasiparticle Scattering via Broadband Microwave Spectroscopy of a d-Wave Superconductor
There has long been a discrepancy between microwave conductivity measurements
in high temperature superconductors and the conductivity spectrum expected in
the simplest models for impurity scattering in a d-wave superconductor. Here we
present a new type of broadband measurement of microwave surface resistance
that finally shows some of the spectral features expected for a d_{x^2-y^2}
pairing state. Cusp-shaped conductivity spectra, consistent with weak impurity
scattering of nodal quasiparticles, were obtained in the 0.6-21 GHz frequency
range in highly ordered crystals of YBa_2Cu_3O_{6.50} and YBa_2Cu_3O_{6.99}.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let
- …
