68 research outputs found

    The Smell of Age: Perception and Discrimination of Body Odors of Different Ages

    Get PDF
    Our natural body odor goes through several stages of age-dependent changes in chemical composition as we grow older. Similar changes have been reported for several animal species and are thought to facilitate age discrimination of an individual based on body odors, alone. We sought to determine whether humans are able to discriminate between body odor of humans of different ages. Body odors were sampled from three distinct age groups: Young (20–30 years old), Middle-age (45–55), and Old-age (75–95) individuals. Perceptual ratings and age discrimination performance were assessed in 41 young participants. There were significant differences in ratings of both intensity and pleasantness, where body odors from the Old-age group were rated as less intense and less unpleasant than body odors originating from Young and Middle-age donors. Participants were able to discriminate between age categories, with body odor from Old-age donors mediating the effect also after removing variance explained by intensity differences. Similarly, participants were able to correctly assign age labels to body odors originating from Old-age donors but not to body odors originating from other age groups. This experiment suggests that, akin to other animals, humans are able to discriminate age based on body odor alone and that this effect is mediated mainly by body odors emitted by individuals of old age

    Mechanism of Neuronal versus Endothelial Cell Uptake of Alzheimer's Disease Amyloid β Protein

    Get PDF
    Alzheimer's disease (AD) is characterized by significant neurodegeneration in the cortex and hippocampus; intraneuronal tangles of hyperphosphorylated tau protein; and accumulation of β-amyloid (Aβ) proteins 40 and 42 in the brain parenchyma as well as in the cerebral vasculature. The current understanding that AD is initiated by the neuronal accumulation of Aβ proteins due to their inefficient clearance at the blood-brain-barrier (BBB), places the neurovascular unit at the epicenter of AD pathophysiology. The objective of this study is to investigate cellular mechanisms mediating the internalization of Aβ proteins in the principle constituents of the neurovascular unit, neurons and BBB endothelial cells. Laser confocal micrographs of wild type (WT) mouse brain slices treated with fluorescein labeled Aβ40 (F-Aβ40) demonstrated selective accumulation of the protein in a subpopulation of cortical and hippocampal neurons via nonsaturable, energy independent, and nonendocytotic pathways. This groundbreaking finding, which challenges the conventional belief that Aβ proteins are internalized by neurons via receptor mediated endocytosis, was verified in differentiated PC12 cells and rat primary hippocampal (RPH) neurons through laser confocal microscopy and flow cytometry studies. Microscopy studies have demonstrated that a significant proportion of F-Aβ40 or F-Aβ42 internalized by differentiated PC12 cells or RPH neurons is located outside of the endosomal or lysosomal compartments, which may accumulate without degradation. In contrast, BBME cells exhibit energy dependent uptake of F-Aβ40, and accumulate the protein in acidic cell organelle, indicative of endocytotic uptake. Such a phenomenal difference in the internalization of Aβ40 between neurons and BBB endothelial cells may provide essential clues to understanding how various cells can differentially regulate Aβ proteins and help explain the vulnerability of cortical and hippocampal neurons to Aβ toxicity

    Supplementation of Male Pheromone on Rock Substrates Attracts Female Rock Lizards to the Territories of Males: A Field Experiment

    Get PDF
    Background: Many animals produce elaborated sexual signals to attract mates, among them are common chemical sexual signals (pheromones) with an attracting function. Lizards produce chemical secretions for scent marking that may have a role in sexual selection. In the laboratory, female rock lizards (Iberolacerta cyreni) prefer the scent of males with more ergosterol in their femoral secretions. However, it is not known whether the scent-marks of male rock lizards may actually attract females to male territories in the field. Methodology/Principal Findings: In the field, we added ergosterol to rocks inside the territories of male lizards, and found that this manipulation resulted in increased relative densities of females in these territories. Furthermore, a higher number of females were observed associated to males in manipulated plots, which probably increased mating opportunities for males in these areas. Conclusions/Significance: These and previous laboratory results suggest that female rock lizards may select to settle in home ranges based on the characteristics of scent-marks from conspecific males. Therefore, male rock lizards might attract more females and obtain more matings by increasing the proportion of ergosterol when scent-marking their territories. However, previous studies suggest that the allocation of ergosterol to secretions may be costly and only high quality male

    Therapy and prophylaxis of opportunistic infections in HIV-infected patients: a guideline by the German and Austrian AIDS societies (DAIG/ÖAG) (AWMF 055/066)

    Get PDF
    • …
    corecore