506 research outputs found

    The origin of the spurious iron spread in the globular cluster NGC 3201

    Full text link
    NGC 3201 is a globular cluster suspected to have an intrinsic spread in the iron content. We re-analysed a sample of 21 cluster stars observed with UVES-FLAMES at the Very Large Telescope and for which Simmerer et al. found a 0.4 dex wide [Fe/H] distribution with a metal-poor tail. We confirmed that when spectroscopic gravities are adopted, the derived [Fe/H] distribution spans ~0.4 dex. On the other hand, when photometric gravities are used, the metallicity distribution from Fe I lines remains large, while that derived from Fe II lines is narrow and compatible with no iron spread. We demonstrate that the metal-poor component claimed by Simmerer et al. is composed by asymptotic giant branch stars that could be affected by non local thermodynamical equilibrium effects driven by iron overionization. This leads to a decrease of the Fe I abundance, while leaving the Fe II abundance unaltered. A similar finding has been already found in asymptotic giant branch stars of the globular clusters M5 and 47 Tucanae. We conclude that NGC 3201 is a normal cluster, with no evidence of intrinsic iron spread.Comment: Accepted for publication by ApJ, 7 pages, 4 figure

    Probing the MSP prenatal stage: the optical identification of the X-ray burster EXO 1745-248 in Terzan 5

    Get PDF
    We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting HST/ACS images acquired in Director's Discretionary Time shortly after (approximately 1 month) the Swift detection of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that currently brightened by ~3 magnitudes, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the Turn-Off/Sub Giant Branch region of Terzan 5. This supports the scenario that the companion should has recently filled its Roche Lobe. Such a system represents the pre-natal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.Comment: ApJ Letter, in pres

    Evolution and Nucleosynthesis of AGB stars in Three Magellanic Cloud Clusters

    Full text link
    We present stellar evolutionary sequences for asymptotic giant branch (AGB) stars in the Magellanic Cloud clusters NGC 1978, NGC 1846 and NGC 419. The new stellar models for the three clusters match the observed effective temperatures on the giant branches, the oxygen-rich to carbon-rich transition luminosities, and the AGB-tip luminosities. A major finding is that a large amount of convective overshoot (up to 3 pressure scale heights) is required at the base of the convective envelope during third dredge-up in order to get the correct oxygen-rich to carbon-rich transition luminosity. The stellar evolution sequences are used as input for detailed nucleosynthesis calculations. For NGC 1978 and NGC 1846 we compare our model results to the observationally derived abundances of carbon and oxygen. We find that additional mixing processes (extra-mixing) are required to explain the observed abundance patterns. For NGC 1846 we conclude that non-convective extra-mixing processes are required on both the RGB and the AGB, in agreement with previous studies. For NGC 1978 it is possible to explain the C/O and 12C/13C abundances of both the O-rich and the C-rich AGB stars by assuming that the material in the intershell region contains high abundances of both C and O. This may occur during a thermal pulse when convective overshoot at the inner edge of the flash-driven convective pocket dredges C and O from the core to the intershell. For NGC 419 we provide our predicted model abundance values although there are currently no published observed abundance studies for the AGB stars in this cluster.Comment: 16 figures, 3 tables, Accepted for publication in Ap

    The Terzan 5 puzzle: discovery of a third, metal-poor component

    Full text link
    We report on the discovery of 3 metal-poor giant stars in Terzan 5, a complex stellar system in the the Galactic bulge, known to have two populations at [Fe/H]=-0.25 and +0.3. For these 3 stars we present new echelle spectra obtained with NIRSPEC at Keck II, which confirm their radial velocity membership and provide average [Fe/H]=-0.79 dex iron abundance and [alpha/Fe]=+0.36 dex enhancement. This new population extends the metallicity range of Terzan~5 0.5 dex more metal poor, and it has properties consistent with having formed from a gas polluted by core collapse supernovae.Comment: Accepted for publication on ApJ Lette

    First evidence of fully spatially mixed first and second generations in globular clusters: the case of NGC 6362

    Full text link
    We present the first evidence of multiple populations in the Galactic globular cluster NGC 6362. We used optical and near-UV Hubble Space Telescope and ground based photometry, finding that both the sub giant and red giant branches are split in two parallel sequences in all color magnitude diagrams where the F336W filter (or U band) is used. This cluster is one of the least massive globulars (M_tot~5x10^4 M_sun) where multiple populations have been detected so far. Even more interestingly and at odds with any previous finding, we observe that the two identified populations share the same radial distribution all over the cluster extension. NGC 6362 is the first system where stars from different populations are found to be completely spatially mixed. Based on N-body and hydrodynamical simulations of multiple stellar generations, we argue that, to reproduce these findings, NGC 6362 should have lost up to the 80% of its original massComment: Accepted for publication by ApJ Letters; 6 pages, 5 figure

    Chemical abundances in the nucleus of the Sagittarius dwarf spheroidal galaxy

    Get PDF
    We present Iron, Magnesium, Calcium, and Titanium abundances for 235 stars in the central region of the Sagittarius dwarf spheroidal galaxy (within 9.0 arcmin ~70 pc from the center) from medium-resolution Keck/DEIMOS spectra. All the considered stars belong to the massive globular cluster M54 or to the central nucleus of the galaxy (Sgr,N). In particular we provide abundances for 109 stars with [Fe/H] > -1.0, more than doubling the available sample of spectroscopic metallicity and alpha-elements abundance estimates for Sgr dSph stars in this metallicity regime. Also, we find the first confirmed member of the Sagittarius dwarf spheroidal with [Fe/H]< -2.0 based on analysis of iron lines. We find for the first time a metallicity gradient in the Sgr,N population, whose peak iron abundance goes from [Fe/H]=-0.38 for R < 2.5 arcmin to [Fe/H]=-0.57 for 5.0 < R < 9.0 arcmin. On the other hand the trends of [Mg/Fe], [Ca/Fe], and [Ti/Fe] with [Fe/H] are the same over the entire region explored by our study. We reproduce the observed chemical patterns of the Sagittarius dwarf spheroidal as a whole with a chemical evolution model implying a high mass progenitor ( M_(DM)=6 X 10^{10} Msun ) and a significant event of mass-stripping occurred a few Gyr ago, presumably starting at the first peri-Galactic passage after infall.Comment: Accepted for publication to A&A, 12 pages, 14 figures, 1 tabl

    Variable stars in Terzan 5: additional evidence of multi-age and multi-iron stellar populations

    Get PDF
    Terzan 5 is a complex stellar system in the Galactic bulge, harboring stellar populations with very different iron content ({\Delta}[Fe/H] ~1 dex) and with ages differing by several Gyrs. Here we present an investigation of its variable stars. We report on the discovery and characterization of three RR Lyrae stars. For these newly discovered RR Lyrae and for six Miras of known periods we provide radial velocity and chemical abundances from spectra acquired with X-SHOOTER at the VLT. We find that the three RR Lyrae and the three short period Miras (P<300 d) have radial velocity consistent with being Terzan 5 members. They have sub-solar iron abundances and enhanced [{\alpha}/Fe], well matching the age and abundance patterns of the 12 Gyr metal-poor stellar populations of Terzan 5. Only one, out of the three long period (P>300 d) Miras analyzed in this study, has a radial velocity consistent with being Terzan 5 member. Its super-solar iron abundance and solar-scaled [{\alpha}/Fe] nicely match the chemical properties of the metal rich stellar population of Terzan 5 and its derived mass nicely agrees with being several Gyrs younger than the short period Miras. This young variable is an additional proof of the surprising young sub-population discovered in Terzan 5.Comment: 20 pages, 4 figures, in press on the Ap

    A chemical trompe-l'\oe{}il: no iron spread in the globular cluster M22

    Get PDF
    We present the analysis of high-resolution spectra obtained with UVES and UVES-FLAMES at the Very Large Telescope of 17 giants in the globular cluster M22, a stellar system suspected to have an intrinsic spread in the iron abundance. We find that when surface gravities are derived spectroscopically (by imposing to obtain the same iron abundance from FeI and FeII lines) the [Fe/H] distribution spans ~0.5 dex, according to previous analyses. However, the gravities obtained in this way correspond to unrealistic low stellar masses (0.1-0.5 Msun) for most of the surveyed giants. Instead, when photometric gravities are adopted, the [FeII/H] distribution shows no evidence of spread at variance with the [FeI/H] distribution. This difference has been recently observed in other clusters and could be due to non-local thermodynamical equilibrium effects driven by over-ionization mechanisms, that mainly affect the neutral species (thus providing lower [FeI/H]) but leave [FeII/H] unaltered. We confirm that the s-process elements show significant star-to-star variations and their abundances appear to be correlated with the difference between [FeI/H] and [FeII/H]. This puzzling finding suggests that the peculiar chemical composition of some cluster stars may be related to effects able to spuriously decrease [FeI/H]. We conclude that M22 is a globular cluster with no evidence of intrinsic iron spread, ruling out that it has retained the supernovae ejecta in its gravitational potential well.Comment: Accepted for publication to ApJ; 33 pages, 10 figures, 6 table
    corecore