106 research outputs found
Study of cosolvent-induced α-chymotrypsin fibrillogenesis: Does protein surface hydrophobicity trigger early stages of aggregation reaction?
The misfolding of specific proteins is often associated with their assembly into fibrillar aggregates, commonly termed amyloid fibrils. Despite the many efforts expended to characterize amyloid formation in vitro, there is no deep knowledge about the environment (in which aggregation occurs) as well as mechanism of this type of protein aggregation. Alpha-chymotrypsin was recently driven toward amyloid aggregation by the addition of intermediate concentrations of trifluoroethanol. In the present study, approaches such as turbidimetric, thermodynamic, intrinsic fluorescence and quenching studies as well as chemical modification have been successfully used to elucidate the underlying role of hydrophobic interactions (involved in early stages of amyloid formation) in α-chymotrypsin-based experimental system. © 2009 Springer Science+Business Media, LLC
Abnormal ECG Findings in Athletes: Clinical Evaluation and Considerations.
PURPOSE OF REVIEW: Pre-participation cardiovascular evaluation with electrocardiography is normal practice for most sporting bodies. Awareness about sudden cardiac death in athletes and recognizing how screening can help identify vulnerable athletes have empowered different sporting disciplines to invest in the wellbeing of their athletes. RECENT FINDINGS: Discerning physiological electrical alterations due to athletic training from those representing cardiac pathology may be challenging. The mode of investigation of affected athletes is dependent on the electrical anomaly and the disease(s) in question. This review will highlight specific pathological ECG patterns that warrant assessment and surveillance, together with an in-depth review of the recommended algorithm for evaluation
Microengineered filters for efficient delivery of nanomaterials into mammalian cells.
Intracellular delivery of nanomaterials into the cells of interest has enabled cell manipulation for numerous applications ranging from cell-based therapies to biomedical research. To date, different carriers or membrane poration-based techniques have been developed to load nanomaterials to the cell interior. These biotools have shown promise to surpass the membrane barrier and provide access to the intracellular space followed by passive diffusion of exogenous cargoes. However, most of them suffer from inconsistent delivery, cytotoxicity, and expensive protocols, somewhat limiting their utility in a variety of delivery applications. Here, by leveraging the benefits of microengineered porous membranes with a suitable porosity, we demonstrated an efficient intracellular loading of diverse nanomaterials to different cell types based on inducing mechanical disruption to the cell membrane. In this work, for the first time, we used ultra-thin silicon nitride (SiN) filter membranes with uniform micropores smaller than the cell diameter to load impermeable nanomaterials into adherent and non-adherent cell types. The delivery performance using SiN microsieves has been validated through the loading of functional nanomaterials from a few nanometers to hundreds of nanometers into mammalian cells with minimal undesired impacts. Besides the high delivery efficiency and improved cell viability, this simple and low-cost approach offers less clogging and higher throughput (107 cell min-1). Therefore, it yields to the efficient introduction of exogenous nanomaterials into the large population of cells, illustrating the potential of these microengineered filters to be widely used in the microfiltroporation (MFP) setup
Inhibitory Effects of Several Essential Oils towards Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B
Plant essential oils are natural products extracted from plants and because of their antimicrobial properties can be used as natural additives in foods. They are also useful for decontamination of food-borne pathogens and can be a safe additive in foods. The antimicrobial activities of essential oils belonging to Saturiea hortensis, Thymus vulgaris, Mentha polegium, Cuminum cyminum, Lavandula officinalis and Mentha viridis L. (spearmint) were investigated at different concentrations (0.1, 0.3, 0.5, 1, 2, 5 and 10%v/v) against Salmonella typhimurium, Salmonella paratyphi A and Salmonella paratyphi B by using the agar well diffusion method. Essential oils showed inhibitory effect on Salmonella spp. in the agar well diffusion assay. In addition, the capability of essential oils for decontamination of minced row beef, ground beef, minced raw chicken and minced raw fish inoculated with Salmonella spp. at 0.1 and 0.5%v/v were assessed. Reduction of the Salmonella spp. population was observed following the inoculation of the cultures with 0.1 and 0.5%v/v essential oils
A hybridized mechano-electroporation technique for efficient immune cell engineering.
Immune cell engineering, which involves genetic modification of T cells, natural killer cells, and macrophages, is shifting the paradigm in immunotherapy for treating hematologic malignancies. These modified cells can be viewed as living drugs and offer advantages, including dynamic functionality, active local trafficking, and boosting the immune system while recognizing and eliminating malignant cells. Among the current technologies employed for the modification of immune cell functions, electroporation stands as a predominant approach, but it suffers from heterogeneity arising from the treatment of a bulk population of immune cells during the manufacturing procedures. To address this challenge of the field, here we present a hybrid approach to induce consecutive gentle mechanical and electric shocks. This approach enhances the treatment homogeneity and improves outcomes in difficult-to-load immune cells. The hybrid approach aims to enhance the treatment homogeneity by passing individual immune cells through a microengineered filter membrane with micropores smaller than the cell diameter. This facilitates the creation of transient pores in the cell membrane, followed by efficient delivery of biomolecules through the complementary use of a gentle electric shock. Using this hybrid mechano-electroporation (HMEP) system, we could successfully deliver fluorescein isothiocyanate (FITC) dextran molecules from the smallest (4 kDa) to the largest (2000 kDa) size and EGFP expressing plasmid DNA into different immune cell types. We also provide insight into the delivery performance of the HMEP system in comparison with the benchtop electroporation since both methods hinge on membrane disruption as their permeabilization mechanism. Immune cells treated with the HMEP protocol demonstrated higher delivery efficiencies while maintaining cell viability compared to those experiencing conventional electroporation. Therefore, membrane-based mechanoporation can be a cost-effective and efficient approach to pre-treat the hard-to-deliver immune cells before electroporation, elevating the treatment homogeneity and delivery of exogenous cargoes to a higher level
A Portable RT-LAMP/CRISPR Machine for Rapid COVID-19 Screening.
The COVID-19 pandemic has changed people's lives and has brought society to a sudden standstill, with lockdowns and social distancing as the preferred preventative measures. To lift these measurements and reduce society's burden, developing an easy-to-use, rapid, and portable system to detect SARS-CoV-2 is mandatory. To this end, we developed a portable and semi-automated device for SARS-CoV-2 detection based on reverse transcription loop-mediated isothermal amplification followed by a CRISPR/Cas12a reaction. The device contains a heater element mounted on a printed circuit board, a cooler fan, a proportional integral derivative controller to control the temperature, and designated areas for 0.2 mL Eppendorf® PCR tubes. Our system has a limit of detection of 35 copies of the virus per microliter, which is significant and has the capability of being used in crisis centers, mobile laboratories, remote locations, or airports to diagnose individuals infected with SARS-CoV-2. We believe the current methodology that we have implemented in this article is beneficial for the early screening of infectious diseases, in which fast screening with high accuracy is necessary
Recent Advances in CRISPR/Cas9 Delivery Approaches for Therapeutic Gene Editing of Stem Cells.
Rapid advancement in genome editing technologies has provided new promises for treating neoplasia, cardiovascular, neurodegenerative, and monogenic disorders. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful gene editing tool offering advantages, including high editing efficiency and low cost over the conventional approaches. Human pluripotent stem cells (hPSCs), with their great proliferation and differentiation potential into different cell types, have been exploited in stem cell-based therapy. The potential of hPSCs and the capabilities of CRISPR/Cas9 genome editing has been paradigm-shifting in medical genetics for over two decades. Since hPSCs are categorized as hard-to-transfect cells, there is a critical demand to develop an appropriate and effective approach for CRISPR/Cas9 delivery into these cells. This review focuses on various strategies for CRISPR/Cas9 delivery in stem cells
Oleuropein derivatives from olive fruit extracts reduce α-synuclein fibrillation and oligomer toxicity
Aggregation of α-synuclein (αSN) is implicated in neuronal degeneration in Parkinson's disease and has prompted searches for natural compounds inhibiting αSN aggregation and reducing its tendency to form toxic oligomers. Oil from the olive tree (Olea europaea L.) represents the main source of fat in the Mediterranean diet and contains variable levels of phenolic compounds, many structurally related to the compound oleuropein. Here, using αSN aggregation, fibrillation, size-exclusion chromatography–multiangle light scattering (SEC-MALS)-based assays, and toxicity assays, we systematically screened the fruit extracts of 15 different olive varieties to identify compounds that can inhibit αSN aggregation and oligomer toxicity and also have antioxidant activity. Polyphenol composition differed markedly among varieties. The variety with the most effective antioxidant and aggregation activities, Koroneiki, combined strong inhibition of αSN fibril nucleation and elongation with strong disaggregation activity on preformed fibrils and prevented the formation of toxic αSN oligomers. Fractionation of the Koroneiki extract identified oleuropein aglycone, hydroxyl oleuropein aglycone, and oleuropein as key compounds responsible for the differences in inhibition across the extracts. These phenolic compounds inhibited αSN amyloidogenesis by directing αSN monomers into small αSN oligomers with lower toxicity, thereby suppressing the subsequent fibril growth phase. Our results highlight the molecular consequences of differences in the level of effective phenolic compounds in different olive varieties, insights that have implications for long-term human health
Inhibitory effects of Iranian Cuminum Cyminum Against Amyloid Fibril Formation and Cytotoxicity of Hen Egg white Lysozyme (HEWL) on SK-N-MC Cells
Background and Objective: Protein fibrils are deposited in different tissues as amyloid plaques, and it is strongly believed that they contribute to the pathogenesis of disorders, called amyloidosis. Cuminum cyminum has been used traditionally for dementia, which is a related disease to protein fibrillation. The purpose of this study was to investigate the inhibitory effects of Iranian herbal medicinal essential oils, as sources of small molecules, on the protein fibrillation process and their cytotoxicity effects. Materials and Methods: Fibrillation was characterized using circular dichroism spectroscopy, fluorescence assay with thioflavin T, and atomic force microscopy. Cytotoxicity studies were examined on SK-N-MC cell lines by MTT, lactate dehydrogenase and glucose consumption assays. Results: The study showed that the C. cyminum essential oil inhibited fibrillation of the hen egg white lysozyme (HEWL), representing the protein model for fibrillation. This effect was specific, although, other herbal medicinal oils did not demonstrate similar inhibitory effects on protein fibrillation, in fact, sometimes they induced fibrillation. Cytotoxicity assays indicated that the oil alone destroyed the cultivated cells. Conclusion: It is concluded that although C. cyminum have a significant effect on the inhibition of protein fibrillation but causes cell death
- …
