204 research outputs found
Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations
In this work we propose a new combined TCAD radiation damage modelling
scheme, featuring both bulk and surface radiation damage effects, for the
analysis of silicon detectors aimed at the High Luminosity LHC. In particular,
a surface damage model has been developed by introducing the relevant
parameters (NOX, NIT) extracted from experimental measurements carried out on
p-type substrate test structures after gamma irradiations at doses in the range
10-500 Mrad(Si). An extended bulk model, by considering impact ionization and
deep-level cross-sections variation, was included as well. The model has been
validated through the comparison of the simulation findings with experimental
measurements carried out at very high fluences (2 10^16 1 MeV equivalent
n/cm^2) thus fostering the application of this TCAD approach for the design and
optimization of the new generation of silicon detectors to be used in future
HEP experiments.Comment: 8 pages, 14 figures. arXiv admin note: text overlap with
arXiv:1611.1013
Fabrication of a hydrogenated amorphous silicon detector in 3-d geometry and preliminary test on planar prototypes
Hydrogenated amorphous silicon (a-Si:H) can be produced by plasma-enhanced chemical vapor deposition (PECVD) of SiH4 (silane) mixed with hydrogen. The resulting material shows outstanding radiation hardness properties and can be deposited on a wide variety of substrates. Devices employing a-Si:H technologies have been used to detect many different kinds of radiation, namely, minimum ionizing particles (MIPs), X-rays, neutrons, and ions, as well as low-energy protons and alphas. However, the detection of MIPs using planar a-Si:H diodes has proven difficult due to their unsatisfactory S/N ratio arising from a combination of high leakage current, high capacitance, and limited charge collection efficiency (50% at best for a 30 µm planar diode). To overcome these limitations, the 3D-SiAm collaboration proposes employing a 3D detector geometry. The use of vertical electrodes allows for a small collection distance to be maintained while preserving a large detector thickness for charge generation. The depletion voltage in this configuration can be kept below 400 V with a consequent reduction in the leakage current. In this paper, following a detailed description of the fabrication process, the results of the tests performed on the planar p-i-n structures made with ion implantation of the dopants and with carrier selective contacts are illustrated
Testing of planar hydrogenated amorphous silicon sensors with charge selective contacts for the construction of 3D-detectors
Hydrogenated Amorphous Silicon (a-Si:H) is a well known material for its intrinsic radiation hardness and is primarily utilized in solar cells as well as for particle detection and dosimetry. Planar p-i-n diode detectors are fabricated entirely by means of intrinsic and doped PECVD of a mixture of Silane (SiH4) and molecular hydrogen. In order to develop 3D detector geometries using a-Si:H, two options for the junction fabrication have been considered: ion implantation and charge selective contacts through atomic layer deposition. In order to test the functionality of the charge selective contact electrodes, planar detectors have been fabricated utilizing this technique. In this paper, we provide a general overview of the 3D fabrication project followed by the results of leakage current measurements and X-ray dosimetric tests performed on planar diodes containing charge selective contacts to investigate the feasibility of the charge selective contact methodology for integration with the proposed 3D detector architectures
Toward an international consensus-Integrating lipoprotein apheresis and new lipid-lowering drugs
Background: Despite advances in pharmacotherapy of lipid disorders, many dyslipidemic patients do not attain sufficient lipid lowering to mitigate risk of atherosclerotic cardiovascular disease. Several classes of novel lipid-lowering agents are being evaluated to reduce atherosclerotic cardiovascular disease risk. Lipoprotein apheresis (LA) is effective in acutely lowering the plasma concentrations of atherogenic lipoproteins including low-density lipoprotein cholesterol and lipoprotein(a), and novel lipid-lowering drugs may dampen the lipid rebound effect of LA, with the possibility that LA frequency may be decreased, in some cases even be discontinued. Sources of material: This document builds on current American Society for Apheresis guidelines and, for the first time, makes recommendations from summarized data of the emerging lipid-lowering drug classes (inhibitors of proprotein convertase subtilisin/kexin type 9 or microsomal triglyceride transfer protein, high-density lipoprotein mimetic), including the available evidence on combination therapy with LA with respect to the management of patients with dyslipidemia. Abstract of findings: Recommendations for different indications are given based on the latest evidence. However, except for lomitapide in homozygous familial hypercholesterolemia and alirocumab/evolocumab in heterozygous familial hypercholesterolemia subjects, limited data are available on the effectiveness and safety of combination therapy. More studies on combining LA with novel lipid-lowering drugs are needed. Conclusion: Novel lipid-lowering agents have potential to improve the performance of LA, but more evidence is needed. The Multidisciplinary International Group for Hemapheresis TherapY and Metabolic DIsturbances Contrast scientific society aims to establish an international registry of clinical experience on LA combination therapy to expand the evidence on this treatment in individuals at high cardiovascular disease risk
Progress in Diamond Detector Development
Detectors based on Chemical Vapor Deposition (CVD) diamond have been used successfully in Luminosity and Beam Condition Monitors (BCM) in the highest radiation areas of the LHC. Future experiments at CERN will accumulate an order of magnitude larger fluence. As a result, an enormous effort is underway to identify detector materials that can operate under fluences of 1 · 1016 n cm−2 and 1 · 1017 n cm−2. Diamond is one candidate due to its large displacement energy that enhances its radiation tolerance. Over the last 30 years the RD42 collaboration has constructed diamond detectors in CVD diamond with a planar geometry and with a 3D geometry to extend the material's radiation tolerance. The 3D cells in these detectors have a size of 50 µm×50 µm with columns of 2.6 µm in diameter and 100 µm×150 µm with columns of 4.6 µm in diameter. Here we present the latest beam test results from planar and 3D diamond pixel detectors
A study of the radiation tolerance of cvd diamond to 70 mev protons, fast neutrons and 200 mev pions
We measured the radiation tolerance of commercially available diamonds grown by the Chemical Vapor Deposition process by measuring the charge created by a 120 GeV hadron beam in a 50 μm pitch strip detector fabricated on each diamond sample before and after irradiation. We irradiated one group of samples with 70 MeV protons, a second group of samples with fast reactor neutrons (defined as energy greater than 0.1 MeV), and a third group of samples with 200 MeV pions, in steps, to (8.8±0.9) × 10 protons/cm, (1.43±0.14) × 10 neutrons/cm, and (6.5±1.4) × 1014 pions/cm, respectively. By observing the charge induced due to the separation of electron–hole pairs created by the passage of the hadron beam through each sample, on an event-by-event basis, as a function of irradiation fluence, we conclude all datasets can be described by a first-order damage equation and independently calculate the damage constant for 70 MeV protons, fast reactor neutrons, and 200 MeV pions. We find the damage constant for diamond irradiated with 70 MeV protons to be 1.62±0.07(stat)±0.16(syst)× 10−18 cm/(pμm), the damage constant for diamond irradiated with fast reactor neutrons to be 2.65±0.13(stat)±0.18(syst)× 10−18 cm/(nμm), and the damage constant for diamond irradiated with 200 MeV pions to be 2.0±0.2(stat)±0.5(syst)× 10−18 cm/(πμm). The damage constants from this measurement were analyzed together with our previously published 24 GeV proton irradiation and 800 MeV proton irradiation damage constant data to derive the first comprehensive set of relative damage constants for Chemical Vapor Deposition diamond. We find 70 MeV protons are 2.60 ± 0.29 times more damaging than 24 GeV protons, fast reactor neutrons are 4.3 ± 0.4 times more damaging than 24 GeV protons, and 200 MeV pions are 3.2 ± 0.8 more damaging than 24 GeV protons. We also observe the measured data can be described by a universal damage curve for all proton, neutron, and pion irradiations we performed of Chemical Vapor Deposition diamond. Finally, we confirm the spatial uniformity of the collected charge increases with fluence for polycrystalline Chemical Vapor Deposition diamond, and this effect can also be described by a universal curve
Beam test results of 3D pixel detectors constructed with poly-crystalline CVD diamond
As a possible candidate for extremely radiation tolerant tracking devices we present a novel detector design - namely 3D detectors - based on poly-crystalline CVD diamond sensors with a pixel readout. The fabrication of recent 3D detectors as well their results in recent beam tests are presented. We measured the hit efficiency and signal response of two 3D diamond detectors with 50 × 50 μm cell sizes using pixel readout chip technologies currently used at CMS and ATLAS. In all runs, both devices attained efficiencies >98 % in a normal incident test beam of minimum ionising particles. The highest efficiency observed during the beam tests was 99.2 %
- …