1,248 research outputs found
Overcoming a fast transverse instability by means of octupole-induced tune spread in the Relativistic Heavy Ion Collider
During the Relativistic Heavy Ion Collider commissioning in 2001 a fast transverse instability was observed on the ramp. In general this could be counteracted with increased chromaticity, resulting in Landau damping. However this method could not be applied around transition energy where chromaticities have to change sign. So octupoles were used near transition energy to create transverse Landau damping and avoid the transverse instability, emittance blowup, and beam loss. This paper describes the considerations that led to the present scheme, as well as experimental results
Designing for Ballet Classes: Identifying and Mitigating Communication Challenges Between Dancers and Teachers
Dancer-teacher communication in a ballet class can be challenging: ballet is one of the most complex forms of movements, and learning happens through multi-faceted interactions with studio tools (mirror, barre, and floor) and the teacher. We conducted an interview-based qualitative study with seven ballet teachers and six dancers followed by an open-coded analysis to explore the communication challenges that arise while teaching and learning in the ballet studio. We identified key communication issues, including adapting to multi-level dancer expertise, transmitting and realigning development goals, providing personalized corrections and feedback, maintaining the state of flow, and communicating how to properly use tools in the environment. We discuss design implications for crafting technological interventions aimed at mitigating these communication challenges
Momentum Analyticity and Finiteness of the 1-Loop Superstring Amplitude
The Type II Superstring amplitude to 1-loop order is given by an integral of
-functions over the moduli space of tori, which diverges for real
momenta. We construct the analytic continuation which renders this amplitude
well defined and finite, and we find the expected poles and cuts in the complex
momentum plane.Comment: 10pp, /UCLA/93/TEP/
Dispersion Relations in String Theory
We analyze the analytic continuation of the formally divergent one-loop
amplitude for scattering of the graviton multiplet in the Type II Superstring.
In particular we obtain explicit double and single dispersion relations,
formulas for all the successive branch cuts extending out to plus infinity, as
well as for the decay rate of a massive string state of arbitrary mass 2N into
two string states of lower mass. We compare our results with the box diagram in
a superposition of -like field theories. The stringy effects are traced
to a convergence problem in this superposition.Comment: 17 pages, COLUMBIA-YITP-UCLA/93/TEP/45 (figures fixed up
Observation of coasting beam at the HERA Proton--Ring
We present data collected with the HERA-B wire target which prove the
existence of coasting beam at the HERA proton storage ring. The coasting beam
is inherently produced by the proton machine operation and is not dominated by
target effects.Comment: 17 pages (Latex), 12 figures (Enc. Postscript
Comparison of the Spherical Averaged Pseudopotential Model with the Stabilized Jellium Model
We compare Kohn-Sham results (density, cohesive energy, size and effect of
charging) of the Spherical Averaged Pseudopotential Model with the Stabilized
Jellium Model for clusters of sodium and aluminum with less than 20 atoms. We
find that the Stabilized Jellium Model, although conceptually and practically
more simple, gives better results for the cohesive energy and the elastic
stiffness. We use the Local Density Approximation as well as the Generalized
Gradient Approximation to the exchange and correlation energies.Comment: 13 pages, latex, 8 figures, compressed postscript version available
at http://www.fis.uc.pt/~vieir
A hybrid version of the tilted axis cranking model and its application to ^{128}Ba
A hybrid version the deformed nuclear potential is suggested, which combines
a spherical Woods Saxon potential with a deformed Nilsson potential. It removes
the problems of the conventional Nilsson potential in the mass 130 region.
Based on the hybrid potential, tilted axis cranking calculations are carried
out for the magnetic dipole band in ^{128}Ba.Comment: 10 pages 6 figure
Facilities for the Energy Frontier of Nuclear Physics
The Relativistic Heavy Ion Collider at BNL has been exploring the energy
frontier of nuclear physics since 2001. Its performance, flexibility and
continued innovative upgrading can sustain its physics output for years to
come. Now, the Large Hadron Collider at CERN is about to extend the frontier
energy of laboratory nuclear collisions by more than an order of magnitude. In
the coming years, its physics reach will evolve towards still higher energy,
luminosity and varying collision species, within performance bounds set by
accelerator technology and by nuclear physics itself. Complementary high-energy
facilities will include fixed-target collisions at the CERN SPS, the FAIR
complex at GSI and possible electron-ion colliders based on CEBAF at JLAB, RHIC
at BNL or the LHC at CERN.Comment: Invited talk at the International Nuclear Physics Conference,
Vancouver, Canada, 4-9 July 2010, to be published in Journal of Physics:
Conference Series. http://inpc2010.triumf.ca
Rearrangement of cluster structure during fission processes
Results of molecular dynamics simulations of fission reactions and are presented. Dependence
of the fission barriers on isomer structure of the parent cluster is analyzed.
It is demonstrated that the energy necessary for removing homothetic groups of
atoms from the parent cluster is largely independent of the isomer form of the
parent cluster. Importance of rearrangement of the cluster structure during the
fission process is elucidated. This rearrangement may include transition to
another isomer state of the parent cluster before actual separation of the
daughter fragments begins and/or forming a "neck" between the separating
fragments
- …
