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Overcoming a fast transverse instability by means of octupole-induced tune spread
in the Relativistic Heavy Ion Collider
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During the Relativistic Heavy Ion Collider commissioning in 2001 a fast transverse instability was
observed on the ramp. In general this could be counteracted with increased chromaticity, resulting in
Landau damping. However this method could not be applied around transition energy where chromatici
ties have to change sign. So octupoles were used near transition energy to create transverse Land
damping and avoid the transverse instability, emittance blowup, and beam loss. This paper describes th
considerations that led to the present scheme, as well as experimental results.
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I. INTRODUCTION

The Relativistic Heavy Ion Collider (RHIC) is designe
to accelerate and collide fully stripped gold ions at energ
of up to 100 GeV per nucleon, equivalent to a relativist
g factor of g � 107 [1]. Gold ions are injected from
the Alternating Gradient Synchrotron (AGS) into the tw
RHIC rings (“Blue” and “Yellow”) atg � 10.5 and then
accelerated to storage energies. During the acceleration
transition energy of RHIC atgt � 23.23 is crossed. This
transition energy crossing can introduce many transve
and longitudinal problems such as space charge misma
transverse microwave instability, Robinson instability, an
others.

The linear transition jump in RHIC was designed an
built to minimize these transition crossing problems [2
Sincegt is a lattice parameter, it can be slightly mod
fied by transverse optics changes. This is accomplished
ramping a set of special quadrupoles before the beam
ergy approaches transition, which results in an increa
value of gt. The current in the quadrupoles is then r
versed within 35 msec which jumpsgt to a value below
the beam energy. The rf synchronous phasefs is changed
(by 180± 2 2fs) at the same time. To fight the head-ta
effect the chromaticites must change sign. However,
sextupoles have no jump mechanism and their streng
change rather slowly.

During the RHIC run in 2001 a fast instability
was observed on the ramp, limiting the maximum t
tal beam intensity to roughly25 3 109 gold ions in
55 bunches—about half the design value. This ins
bility resulted in fast beam loss (Fig. 1) and transver
emittance blowup and could also be observed in t
longitudinal phase space (Fig. 2). While the cause of t
instability is still unknown, its rise time indicates it to b
a transverse rather than a longitudinal instability. Figure
shows three longitudinal bunch profiles taken by the w
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current monitor, the time between profiles correspondin
to 125 revolutions in RHIC. While the first profile is
roughly Gaussian, the second one exhibits a “shoulder”
its right slope. The third profile shows a clear double-pea
structure.

To overcome the intensity limitation imposed by this
instability, chromaticities were increased to provide suffi
cient Landau damping. However, this method failed righ
at transition where the sign change—and thus small chr
maticities—are required. It was quickly found that the
necessary Landau damping could be provided by brin
ing the two beams into collision around transition energ
which raised the maximum achievable beam intensity
some30 3 109 ions per beam.

FIG. 1. (Color) Beam intensities in units of106 gold ions ver-
sus time during injection and ramp towards 100 GeV�nucleon.
While the blue beam is above the instability threshold and ther
fore suffers some 60% beam loss shortly after crossinggt , the
yellow beam survives since it is below the respective thresho
intensity.
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FIG. 2. (Color) Tomographic reconstruction of the longitudinal
phase space distribution of a single bunch, 0.55 sec after transi-
tion crossing. About 0.45 sec after the transition jump the fast
instability occurs, leading to a double-peak structure [3].
When attempts were made to further increase the beam
current, large fractions of the beams were lost, presumably
due to the beam-beam kick when both beams were brought
into collision. Therefore an alternative method to provide
a sufficient tune spread was developed, namely, the use of
octupoles.
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FIG. 3. Three consecutive longitudinal bunch profiles, taken every 125 turns (1.6 msec). Since the initially Gaussian bunch profile
(top) evolves into a double-peak structure (bottom) within 3.2 msec (250 revolutions), this fast rise time may indicate a transverse
rather than a longitudinal instability.
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II. DRIVING TERM CALCULATIONS

The RHIC collider consists of two rings, each having
six arcs with long straight sections. Out of 46 quadrupole
magnets per arc, 11 are equipped with octupole coils. They
are powered in four families, two families in the arcs with
large dispersion and two families in the straight sections
where the dispersion is small but nonzero due to the inter-
action region dipoles which provide head-on collisions.

Additionally, each of the 12 final focus quadrupole
triplets is equipped with two additional octupole windings
for local field compensation purposes. However, only
triplet octupoles in two interaction regions (IRs) are con-
nected to power supplies. Therefore only eight octupoles
in the triplets were available during the experiments.

Because the tunes in RHIC are in the interval between
0.2 and 0.25, the driving terms of the quarter resonance
are of concern since they are driven to first order in the
octupole strength. We therefore derived the driving terms
of the (4,0) resonance and the detuning coefficients of all
octupole families. Resonance driving terms and detuning
coefficients can be calculated in an automatic fashion using
standard normal form tools [4] which need as an input a
one-turn map derived with differential algebra [5]. These
map creation and analysis tools are implemented in the
tracking code SIXTRACK [6].

The procedure to find these resonances and detuning
coefficients is as follows: one takes a MAD8 input file of
RHIC, which includes the various octupole families; then
a special MAD-8 version [7,8] is run which produces the
SIXTRACK input files; a subsequent SIXTRACK run produces
084401-2
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TABLE I. Driving term H40 of the (4,0) resonance and hori-
zontal detuning coefficient dQx�dex per octupole family. The
sum of the detuning coefficients of all eight triplet octupoles is
about 2.7 times larger than the corresponding value for the four
arc octupole families.

Octupole H40
dQx

dex
name cos term (1023) sin term (1023) (1023)

B3M05C1B 0.17 20.15 20.85
B3M05C3B 0.98 20.55 24.3
B3M06C1B 0.70 20.05 22.7
B3M06C3B 0.14 20.04 20.56
B3M07C1B 0.57 20.42 22.7
B3M07C3B 0.13 20.06 20.56
B3M08C1B 0.16 20.15 20.85
B3M08C3B 0.95 20.59 24.3

OCT2F 20.017 20.05 24.2
OCT2D 0.002 20.004 20.25
OCTF 20.03 20.001 21.6
OCTD 20.003 20.0007 20.21

the one-turn map of RHIC; and last the map analysis is
done with the DALIE code [9].

Table I shows that the lattice octupoles (last four entries
in the table) have sufficiently strong detuning coefficients
(last column) while the cosine and sine terms of the (4,0)
resonance (second and third columns) are much smaller
than those of the octupoles located in the IRs (names start-
ing with “B3M05C” ). These four lattice octupole families
are therefore the obvious choice for creating detuning with-
out driving the fourth order resonances which would limit
the dynamic aperture and cause particle losses.

III. ESTIMATE AND MEASUREMENT OF
REQUIRED OCTUPOLE STRENGTH

Based on experience with colliding beams at transition
energy, the required octupole strength was estimated as
follows: In the case of round beams the beam-beam kick
Dz0�� Dx0 or Dy0� can be expressed as [10]

Dz0 �
Z2

A

2Nbrpz

gr2

∑
1 2 exp

µ
2

r2

2s2

∂∏
,

r2 � x2 1 y2.

(1)

Here Z � 79 is the charge state of the gold ions, A �
197 is the number of nucleons, and Nb is the number of
ions per oncoming bunch. rp � 1.84 3 10218 m denotes
the classical proton radius, while s � 0.6 mm is the rms
beam size at the interaction point for a design normalized
emittance of en � 10p mm mrad, and b�

x � b�
y � b� �

5 m during transition crossing. The Lorentz factor is g �
gt � 23.23.

Expanding the exponential leads to

Dz0 �
Z2

A

2Nbrpz

gr2

∑
1 2

X
n

� x2

2s2 �
n!

∏
; (2)
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thus the octupole term in the horizontal plane (z � x, y �
0) can be written as

Dx0
oct �

Z2

A

2Nbrp

g

1
2 3 4s4 x3, (3)

which corresponds to an integrated octupole strength of

obb �
Z2

A

2Nbrp

g

1
2 3 4s4 . (4)

A similar expression exists for the vertical plane (z � y,
x � 0).

For an octupole located at a position where b � boct,
the integrated strength o � ooct required to produce the
same tune shift as the beam-beam interaction scales as

ooct � obb
b�2

b
2
oct

. (5)

Since beam-beam tune spread was sufficient to fight
the fast instability for intensities up to some Nb �
25 3 109�55 gold ions per bunch, octupoles have to
provide a similar tune shift. The integrated beam-beam
octupole term per interaction point can be calculated
according to Eq. (4) as obb � 2.2 3 103 m23; this has
to be scaled with the b function at the location of the
respective octupoles [Eq. (5)].

If IR octupoles were to be used, the required strength
can be easily estimated, using the considerations given
above. Octupoles in the interaction region triplets are lo-
cated at a distance of about s � 30 m from the interaction
point, therefore the b function at their location is about
boct � b� 1

s2

b� � 185 m. If the beam-beam detuning of
a single interaction point were to be provided by a single IR
octupole, the required integrated octupole strength would
therefore be ooct � 1.6 m23. In the case of RHIC, eight
IR octupoles are available to provide the tune shift cor-
responding to six beam-beam interaction points; thus the
minimum required integrated IR octupole strength is esti-
mated at ooct � 1.2 m23. This strength has to be increased
by a factor of 2.7 for the arc octupoles because of the much
smaller b functions at their locations; see Table I.

IV. EXPERIMENTAL RESULTS

As Table I shows, for a given detuning the contribu-
tion of arc octupoles to the width of the quarter reso-
nance is about 2 orders of magnitude smaller than for
the case of IR octupoles. This scheme was therefore ex-
pected to be more beneficial in terms of maximum achiev-
able beam intensities. Though the number of octupoles
involved in this scheme is much larger than the number of
IR octupoles, their sum effect on the beam tune spread is
smaller by a factor of 2.7 due to the much smaller b func-
tions. The integrated octupole strength was therefore set
to o � 3.0 m22 for all four arc octupole families.

Using arc octupoles leads to a substantial increase in
attainable beam intensities, as Fig. 4 shows. At intensi-
ties close to 40 3 109 gold ions per beam, only some 5%
084401-3
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FIG. 4. (Color) Beam intensities in units of 106 gold ions versus
time during injection and on the ramp, with arc octupoles on.
Though intensities are about 35 3 109 and 37 3 109 gold ions
per beam, respectively, both beams suffer only about 5% loss
around transition.

FIG. 5. (Color) Tomographic reconstruction of the longitudinal
phase space distribution of a single bunch, 0.55 sec after transi-
tion crossing, with octupoles on. No instability occurs.
084401-4
beam loss occurs at transition. Additionally, neither trans-
verse emittance blow-up nor longitudinal bunch distortions
(Fig. 5) were observed, clearly excluding the fast instabil-
ity as the root cause of this remaining beam loss.

V. CONCLUSION

A fast instability around transition energy has been suc-
cessfully counteracted by means of octupole-induced Lan-
dau damping; this damping could not be provided by
increased chromaticity due to the required chromaticity
sign change at transition. The optimum integrated octupole
strength is in good agreement with estimates derived from
beam-beam detuning, which was initially used for the same
purpose.
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