64 research outputs found

    Polymorphic microsatellite investigating the evolution loci in Allodapine bees for of social behaviour

    Get PDF
    Allodapine bees provide extraordinary systems for investigating the evolution of cooperation and particularly the division of reproduction in animal societies. We present the first microsatellite primers for two native Australian species (Exoneura nigrescens and E. robusta; Hymenoptera: Apidae: Xylocopinae) which allow the accurate determination of pedigrees, reproductive skew and relatedness in colonies. Up to 55 different alleles were observed per locus

    Species-diagnostic microsatellite loci for the fig wasp genus Pegoscapus

    Get PDF
    To obtain tools for the estimation of inbreeding and assignment of offspring to matrilines, we developed 13 microsatellite loci from the fig wasps that pollinate Ficus obtusifolia. Based on morphological studies, it was thought that a single species (Pegoscapus hoffmeyer) pollinated this fig. However, our data revealed the presence of two coexisting cryptic species. Several diagnostic microsatellite markers may be used to distinguish these two cryptic species. The new microsatellites can be used across a wide range of fig-pollinating wasp species for both evolutionary and population genetic studies

    Lewis and AB0 blood group-phenotypes in periodontitis, cardiovascular disease, obesity and stroke

    Get PDF
    Abstract The AB0 blood group has been linked to ischaemic heart disease, stroke, and periodontal disease, while the Lewis blood group has been linked to ischaemic heart disease and obesity, all of which have been associated with periodontitis. AB0 or Lewis blood group phenotype may therefore constitute common hereditary components predisposing to these disorders. In this study, we investigated if blood group phenotype associated with periodontitis in a subpopulation consisting of 702 participants from a Danish cross-sectional cohort and, secondarily, attempted to confirm their association with hypertension, ischaemic heart disease, stroke, and obesity. No significant association between blood group phenotype and periodontitis was detected, nor were previously reported associations between blood group phenotype and hypertension, ischaemic heart disease, stroke, and obesity confirmed. This may, at least partly, be attributed to differences in study type, outcome definitions, cohort sizes, and population attributable factors. However, our results suggested a strong association between self-reported stroke and the Lewis (a−b−) phenotype (P = 0.0002, OR: 22.28; CI 95: 4.72–131.63)

    Life-Cycle Switching and Coexistence of Species with No Niche Differentiation

    Get PDF
    The increasing evidence of coexistence of cryptic species with no recognized niche differentiation has called attention to mechanisms reducing competition that are not based on niche-differentiation. Only sex-based mechanisms have been shown to create the negative feedback needed for stable coexistence of competitors with completely overlapping niches. Here we show that density-dependent sexual and diapause investment can mediate coexistence of facultative sexual species having identical niches. We modelled the dynamics of two competing cyclical parthenogens with species-specific density-dependent sexual and diapause investment and either equal or different competitive abilities. We show that investment in sexual reproduction creates an opportunity for other species to invade and become established. This may happen even if the invading species is an inferior competitor. Our results suggests a previously unnoticed mechanism for species coexistence and can be extended to other facultative sexual species and species investing in diapause where similar density-dependent life-history switches could act to promote coexistence

    Molecular Approaches to Identify Cryptic Species and Polymorphic Species within a Complex Community of Fig Wasps

    Get PDF
    Cryptic and polymorphic species can complicate traditional taxonomic research and both of these concerns are common in fig wasp communities. Species identification is very difficult, despite great effort and the ecological importance of fig wasps. Herein, we try to identify all chalcidoid wasp species hosted by one species of fig, using both morphological and molecular methods. We compare the efficiency of four different DNA regions and find that ITS2 is highly effective for species identification, while mitochondrial COI and Cytb regions appear less reliable, possibly due to the interference signals from either nuclear copies of mtDNA, i.e. NUMTs, or the effects of Wolbachia infections. The analyses suggest that combining multiple markers is the best choice for inferring species identifications as any one marker may be unsuitable in a given case

    Stridulations Reveal Cryptic Speciation in Neotropical Sympatric Ants

    Get PDF
    The taxonomic challenge posed by cryptic species underlines the importance of using multiple criteria in species delimitation. In the current paper we tested the use of acoustic analysis as a tool to assess the real diversity in a cryptic species complex of Neotropical ants. In order to understand the potential of acoustics and to improve consistency in the conclusions by comparing different approaches, phylogenetic relationships of all the morphs considered were assessed by the analysis of a fragment of the mitochondrial DNA cytochrome b. We observed that each of the cryptic morph studied presents a morphologically distinct stridulatory organ and that all sympatric morphs produce distinctive stridulations. This is the first evidence of such a degree of specialization in the acoustic organ and signals in ants, which suggests that stridulations may be among the cues used by these ants during inter-specific interactions. Mitochondrial DNA variation corroborated the acoustic differences observed, confirming acoustics as a helpful tool to determine cryptic species in this group of ants, and possibly in stridulating ants in general. Congruent morphological, acoustic and genetic results constitute sufficient evidence to propose each morph studied here as a valid new species, suggesting that P. apicalis is a complex of at least 6 to 9 species, even if they present different levels of divergence. Finally, our results highlight that ant stridulations may be much more informative than hitherto thought, as much for ant communication as for integrative taxonomists

    Comparative Phylogeography of a Coevolved Community: Concerted Population Expansions in Joshua Trees and Four Yucca Moths

    Get PDF
    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community – Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes

    The Integrative Taxonomic Approach Reveals Host Specific Species in an Encyrtid Parasitoid Species Complex

    Get PDF
    Integrated taxonomy uses evidence from a number of different character types to delimit species and other natural groupings. While this approach has been advocated recently, and should be of particular utility in the case of diminutive insect parasitoids, there are relatively few examples of its application in these taxa. Here, we use an integrated framework to delimit independent lineages in Encyrtus sasakii (Hymenoptera: Chalcidoidea: Encyrtidae), a parasitoid morphospecies previously considered a host generalist. Sequence variation at the DNA barcode (cytochrome c oxidase I, COI) and nuclear 28S rDNA loci were compared to morphometric recordings and mating compatibility tests, among samples of this species complex collected from its four scale insect hosts, covering a broad geographic range of northern and central China. Our results reveal that Encyrtus sasakii comprises three lineages that, while sharing a similar morphology, are highly divergent at the molecular level. At the barcode locus, the median K2P molecular distance between individuals from three primary populations was found to be 11.3%, well outside the divergence usually observed between Chalcidoidea conspecifics (0.5%). Corroborative evidence that the genetic lineages represent independent species was found from mating tests, where compatibility was observed only within populations, and morphometric analysis, which found that despite apparent morphological homogeneity, populations clustered according to forewing shape. The independent lineages defined by the integrated analysis correspond to the three scale insect hosts, suggesting the presence of host specific cryptic species. The finding of hidden host specificity in this species complex demonstrates the critical role that DNA barcoding will increasingly play in revealing hidden biodiversity in taxa that present difficulties for traditional taxonomic approaches
    corecore