51 research outputs found

    Handling inconsistency on ontologies through a generalized dynamic argumentation framework

    Get PDF
    In this article we present a generalized dynamic argumentation framework that handles arguments expressed in an abstract language assumed to be some first order logic fragment. Once the formalism is presented, we propose a reification to the description logic ALC with the intention to handle ontology debugging. In this sense, since argumentation frameworks reason over graphs that relate arguments through attack, our methodology is proposed to bridge ontological inconsistency sources to attack relations in argumentation. Finally, an argumentation semantics is proposed as a consistency restoration tool to cope with the ontology debugging.Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    A preliminary investigation on a revision-based approach to the status of warrant

    Get PDF
    In this article we are presenting a new perspective on the matter of belief revision by its relation to argumentation systems. Our approach is based on the argumentative formalism Defeasible Logic Programming, and therefore we propose a revision of a defeasible logic program by an argument. The revision operators here introduced are de ned as prioritized, since they ensure warrant of the conclusion of the argument being added to the program following a particular minimal change principle. To achieve this, we give two different approaches: one regarding arguments in the classical sense, whereas the other considers the revision by arguments that also include strict rules and facts. Finally, a brief discussion about the relation between our approach and the basic theory of belief revision is exposed, along with a description of other possible minimal change principles.Red de Universidades con Carreras en Informática (RedUNCI

    Handling inconsistency on ontologies through a generalized dynamic argumentation framework

    Get PDF
    In this article we present a generalized dynamic argumentation framework that handles arguments expressed in an abstract language assumed to be some first order logic fragment. Once the formalism is presented, we propose a reification to the description logic ALC with the intention to handle ontology debugging. In this sense, since argumentation frameworks reason over graphs that relate arguments through attack, our methodology is proposed to bridge ontological inconsistency sources to attack relations in argumentation. Finally, an argumentation semantics is proposed as a consistency restoration tool to cope with the ontology debugging.Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    A preliminary investigation on a revision-based approach to the status of warrant

    Get PDF
    In this article we are presenting a new perspective on the matter of belief revision by its relation to argumentation systems. Our approach is based on the argumentative formalism Defeasible Logic Programming, and therefore we propose a revision of a defeasible logic program by an argument. The revision operators here introduced are de ned as prioritized, since they ensure warrant of the conclusion of the argument being added to the program following a particular minimal change principle. To achieve this, we give two different approaches: one regarding arguments in the classical sense, whereas the other considers the revision by arguments that also include strict rules and facts. Finally, a brief discussion about the relation between our approach and the basic theory of belief revision is exposed, along with a description of other possible minimal change principles.Red de Universidades con Carreras en Informática (RedUNCI

    mini me swift the first mobile owl reasoner for ios

    Get PDF
    Mobile reasoners play a pivotal role in the so-called Semantic Web of Things. While several tools exist for the Android platform, iOS has been neglected so far. This is due to architectural differences and unavailability of OWL manipulation libraries, which make porting existing engines harder. This paper presents Mini-ME Swift, the first Description Logics reasoner for iOS. It implements standard (Subsumption, Satisfiability, Classification, Consistency) and non-standard (Abduction, Contraction, Covering, Difference) inferences in an OWL 2 fragment. Peculiarities are discussed and performance results are presented, comparing Mini-ME Swift with other state-of-the-art OWL reasoners
    corecore