
Handling Inconsistency on Ontologies Through a
Generalized Dynamic Argumentation Framework

Martı́n O. Moguillansky Nicolás D. Rotstein Marcelo A. Falappa

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)
Department of Computer Science and Engineering (DCIC)

Artificial Intelligence Research and Development Laboratory (LIDIA)
Universidad Nacional del Sur (UNS), Bahı́a Blanca, ARGENTINA

E-MAIL: {mom,ndr,maf}@cs.uns.edu.ar

Abstract

In this article we present a generalized dynamic argumentation framework that handles argu-
ments expressed in an abstract language assumed to be some first order logic fragment. Once
the formalism is presented, we propose a reification to the description logic ALC with the inten-
tion to handle ontology debugging. In this sense, since argumentation frameworks reason over
graphs that relate arguments through attack, our methodology is proposed to bridge ontological
inconsistency sources to attack relations in argumentation. Finally, an argumentation semantics is
proposed as a consistency restoration tool to cope with the ontology debugging.

Keywords: Knowledge Representation, Argumentation, Ontology Debugging, Description Log-
ics, Semantic Web.

1 Introduction
In this article, the original dynamic argumentation frameworks (DAF) [16, 17] are generalized with
the intention to handle knowledge represented in fragments of first order logic (FOL). It is important
to mention that DAFs are extensions of the abstract argumentation framework proposed by Dung [5],
enriched to cope with the dynamics of arguments. Given the preliminary state of the current investi-
gations, we will analyze the generalized DAF wrt. a specific fragment of FOL named L2. Such a logic
is the subset of first order predicate calculus (FOPC) with monadic and dyadic predicates allowing
only two variable symbols and without considering functional letters. Decidability of L2 has been
shown in [12]. Recall that monadic (dyadic) predicates, are predicates taking one (two) parameter(s).

Afterwards, the generalized DAF will be reified to the description logic (DL) ALC for ontologies,
given that any concept description in such a logic can be translated into an L2 formula with one free
variable. This result is given in several articles like [4] and [1]. Besides, in [8] an extension of the
ALC DL is presented and proved to be equivalent to L2.

Considering anALC ontology into anALC-Based DAF requires to relate some classical argumen-
tation elements [5] like attack and support to identify different levels of inconsistency in ontologies

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15778474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[6]. Thereafter, an acceptability semantics [3] applied to theALC-Based DAF is proposed to determine
a methodology for ontology debugging.

It is important to note that the argumentation machinery here proposed is semantically determined
–by effect of the semantic entailment. This would allow to propose further implementations relying
on the reasoner used for such a matter. For instance, anALC-Based DAF may be handled via tableaux
technics usually used to implement ontology reasoners. Consequently, the actual ontology debugging
model could be performed by emulating the argumentation machinery, without using it explicitly. In
this sense, this methodology could be considered as theoretical.

2 Generalized Dynamic Argumentation Framework
For the language L2 in consideration, we will use symbols A,A1, A2, . . . and B,B1, B2, . . . to denote
monadic (unary) predicate letters, R, R1, R2, . . . to denote dyadic (binary) predicate letters, x, y to
denote free variable objects, and a, b, c, d to denote individual names. Recall that formulae in L2 are
those of FOPC that can be built with the help of predicate symbols with arity ≤ 2, including equality
and constant symbols, but without function symbols. Note that constant symbols are not specified
since they can be simulated through monadic predicates. Besides, we refer as LA to the sub-language
of L2 identifying atomic formulae.

The logic L2 is interpreted as usual by means of interpretations of the form I = 〈∆I, AI, AI
1, . . . ,

BI, BI
1 , . . . , RI, RI

1, . . .〉, where ∆I is the interpretation domain, AI, AI
1, . . . , B

I, BI
1 , . . . , RI, RI

1, . . .
interpret A,A1, . . . , B, B1, . . . , R, R1, . . ., respectively. For an interpretation I, some a ∈ ∆I and a
formula ϕ(x), we write I |= ϕ(a) if I, v |= ϕ(x), for the assignment v mapping x to a.

In order to specify a generalized DAF, it is necessary to abstract away from the language used to
represent arguments. An (abstract) argument language, referred as Args, needs to be characterized
regarding its inner components: the languages for claims and premises. Therefore, it is necessary
to state some restrictions in order to abstractly characterize the argument language used into the
generalized DAF.

Definition 1 (Argument Language) Given a logicArgs ::= 2Lpr×Lcl withLcl andLpr two different
fragments of L2. Args is a legal argument language iff for every statement p ∈ Lpr there exists
some set C ⊆ 2Lcl such that C |= p. Thus, the languages Lcl and Lpr related by Args are the
languages for claims and premises in Args, respectively.

Recall that an argument is considered an atomic (indivisible) piece of knowledge. To the argumen-
tation machinery, an argument is a primitive element of reasoning supporting a claim from its set of
premises. Usually, argumentation frameworks consider ground arguments, that is, a claim is directly
inferred if the set of premises are conformed. In our framework, we consider two different kinds
of arguments: ground and schematic. In this sense, a set of premises might consider free variables,
meaning that the claim, and therefore the inference, will depend on them. When an argument has its
premises supported, its variables may be instantiated as a result of that. These notions are carefully
detailed throughout this section. Next we formalize the generalized notions of argument and the DAF.

Definition 2 (Argument) An argument B ⊆ Args is a pair 〈P, c〉, where P ⊆ 2Lpr is the finite set
of premises from Lpr, and c ∈ Lcl, the claim. An argument B guarantees P ∪{c} 6|= ⊥ (consistency).
Both premises and claims are represented as finite formulae from their respective language.

Definition 3 (Generalized Dynamic Argumentation Framework) Let T ⊆ 2Args × 2Args be a Gen-
eralized Dynamic Argumentation Framework (DAF), specified by a pair 〈U,A〉, where U ⊆ 2Args is

the universal set of arguments, and A ⊆ U is the framework’s active set containing the unique set of
arguments considered by the argumentation reasoning process.

As usual, pairs of conflictive arguments may appear. Such pairs will be contained in an attack
relation set R, dynamically recognized from the current DAF specification. This notion will be made
clear later. Besides, inactive arguments –ignored by the reasoning process– might be identified by
means of a set I = U \ A. We will consider evidence as the basic available piece of knowledge
that needs no premises to support it. Thus, active arguments with no premises to be satisfied will be
referred as evidence, enclosed in a set E ⊆ A. Those arguments with an empty set of premises that
are inactive will be recognized as non-evidential facts, and will be held in a set F ⊆ I.

Definition 4 (Evidence & Non-evidential Fact) Given a DAF 〈U,A〉 ⊆ 2Args × 2Args, an argument
B ∈ U such that B = 〈{}, c〉 and c ∈ LA, is referred either as: Evidence iff B ∈ A, or Non-
evidential Fact iff B 6∈ A.

Given an argument B ∈ Args, its claim and set of premises are identified by the functions cl :
Args½Lcl, and pr : Args½2Lpr , respectively. For instance, given B = 〈{p1, p2}, c〉, its premises
are pr(B) = {p1, p2}, and its claim, cl(B) = c.

An argument needs to find its premises supported as a functional part of the reasoning process
to reach its claim. In this framework, due to the logic used to represent arguments derived from
that of the ontology languages, a single argument is sometimes not enough to support a premise.
This is the reason why we introduce the notion of coalitions: to identify a minimal set of arguments
verifying some specific properties. For instance, a coalition Ĉ ⊆ 2Args may provide support for
an argument B ∈ Args through some of its premises. For that matter, we present the functions
ĉlset(Ĉ) = {cl(B)|B ∈ Ĉ}, and p̂rset(Ĉ) =

⋃
B∈Ĉ pr(B).

Definition 5 (Supporter) Given a DAF 〈U,A〉 ⊆ 2Args × 2Args, and an argument B ∈ U such that
p ∈ pr(B). A set of arguments Ĉ ⊆ U is a supporting-coalition, or just a supporter, of B through p
iff it guarantees:

(support) ĉlset(Ĉ) |= p,

(consistency) p̂rset(Ĉ) ∪ ĉlset(Ĉ) ∪ pr(B) ∪ {cl(B)} 6|= ⊥, and

(minimality) no Ĉ ′ ⊂ Ĉ is a supporter of B through p.

Definition 6 (Free Premise) Given a DAF 〈U,A〉 ⊆ 2Args × 2Args and an argument B ∈ U, a
premise p ∈ pr(B) of B is free wrt. U iff there is no supporting-coalition Ĉ ⊆ U of B through p.

Definitions 5 and 6 are reviewed in the following examples. Just for simplicity, we will omit
universal quantifiers for free variables in a given formula ϕ(x) to refer to a formula (∀x)(ϕ(x)).

Example 1 Suppose we have a set U = {B1,B2,B3}, where arguments B1 = 〈{(∃y)(A1(y) ∧
R(x, y)), A2(x)}, B(x)〉, B2 = 〈{}, R(a, b)〉, and B3 = 〈{}, A1(b)〉. The set Ĉ = {B2,B3} is a
supporting-coalition of B1 given that {R(a, b), A1(b)} |= (∃y)(A1(y) ∧ R(x, y)). Note that premise
A2(x) is free wrt. U.

Example 2 Assume U = {B1,B2,B3,B4}, where B1 = 〈{A1(x)}, B1(x)〉, B2 = 〈{A1(x)}, B2(x)〉,
B3 = 〈{A2(x)}, A1(x) ∨B1(x)〉, andB4 = 〈{A3(x)},¬B1(x)〉. The set Ĉ = {B3,B4} is a supporting-
coalition of B2. Note that Ĉ cannot be a supporting-coalition of B1 since it violates (supporter)
consistency.

A premise is said to be closed wrt. U if there exists some supporting-coalition for it, and re-
cursively for each new appearing free premise. That means that the “iterated” support of a given
premise p does ultimately end with an empty set of premises iff p is closed wrt. U. To this matter, a
supporting-chain is formally defined as follows.

Definition 7 (Supporting-Chain) Given a DAF 〈U,A〉 ⊆ 2Args × 2Args, and a sequence λ = B p←−
Ĉ1

p1←− Ĉ2
p2←− · · · , where (

⋃
i≥1 Ĉi) ∪ B ⊆ U, p ∈ pr(B), Ĉ1 is a supporting-coalition of B through

p, and for every i > 1, pi−1 ∈ p̂rset(Ĉi−1), and Ĉi is a supporting-coalition of Ĉi−1 through pi−1.
Thus, λ is referred as a (possible infinite) supporting-chain for p of B wrt. U.

Whenever λ has Ĉn as its last element, it follows that every premise in p̂rset(Ĉn) is free wrt. U, or
p̂rset(Ĉn) = ∅. In such a case, λ is said to be a finite supporting-chain for p of length n wrt. U.

The iterated aggregation of arguments via the support relation (c.f. Def. 5) may conform both,
chains of supporting-coalitions for a premise in some argument (c.f. Def. 7), as well as sets of inter-
related arguments (c.f. Def. 8). We will refer to such sets as structures, formally defined as follows.

Definition 8 (Structure) Given a DAF 〈U,A〉 ⊆ 2Args × 2Args, S ⊆ U is a structure for c iff it
guarantees:

(top argument) there exists a unique Btop ∈ S such that cl(Btop) = c,

(connectivity) for every B ∈ S \ {Btop}, there exists a unique subset Ĉ ⊆ S such that B ∈ Ĉ where Ĉ
is a supporting-coalition of an argument in S,

(self-consistency) p̂rset(S) ∪ ĉlset(S) 6|= ⊥, and
(acyclicity) every supporting-chain for every p of every B ∈ S wrt. S is finite.

The claim and premises of S are determined by the functions cl(S) = c and pr(S) = {p ∈
p̂rset(S) | p is a free premise wrt. S}, respectively.

Note that functions “pr” and “cl” are overloaded and can be applied both to arguments and struc-
tures. This is not going to be problematic since either usage will be rather explicit. In addition to that,
we will identify the top argument of a structure S using the function top : 2Args½Args. Note that
cl(top(S)) = cl(S).

Example 3 Given two arguments B1 = 〈{A(x)}, B(x)〉 and B2 = 〈{B(x)}, A(x)〉. A set {B1,B2}
cannot be part of any structure since the infinite supporting-chain λ = B1

A(x)←− {B2} B(x)←− {B1} A(x)←− · · ·
for A(x) would violate (structure) acyclicity.

A structure S trivially formed by a single argument is referred as primitive iff |S| = 1. Thus,
if S = {B} then pr(B) = pr(S) and cl(B) = cl(S). However, not every single argument has an
associated primitive structure. For instance, no structure could contain an argument 〈{A(x)}, A(x)〉
given that it would violate (structure) acyclicity. Depending on the condition of the set of premises in
a structure we may identify two different kinds of structures.

Definition 9 (Schematic & Argumental Structure) Given a DAF 〈U,A〉 ⊆ 2Args × 2Args, a struc-
ture S ⊆ U is referred either as: Argumental iff pr(S) = ∅, or Schematic iff pr(S) 6= ∅.

When no distinction is needed, we refer to primitive, schematic, or argumental structures, simply
as structures. A sub-structure relation will be defined by E ∈ 2Args × 2Args. That is, given a
structure S for a claim c, if it contains a subset S′ verifying the conditions in Def. 8 for a claim c′, then
S′ is a structure for c′ and S′ES. Finally, S′ is said a sub-structure of S. Note that c = c′ iff S = S′.

From a schematic structure and a supporting-coalition for it, a new structure is formed. If this
new structure has no free premises, it means that a variable substitution was made over the schematic
structure leading to an argumental structure. In general, a structure that adds some evidential argument
about an individual name, say a, as part of the support for a schematic structure, provokes a variable
substitution in the latter. In that case, the argumental structure ends up asserting some property –
through its claim– about the individual a. Finally, it is clear that if a structure states a property about
some element of the world by means of a free variable x then it is schematic.

Two argumental structures S1 and S2 are in conflict whenever they cannot be assumed together.
This notion may be made extensive to sets of argumental structures, namely coalition of argumental
structures. Coalition of structures is analogous to that of arguments; its formalization is not given due
to lack of space. Therefore, the functions “ĉlset” and “p̂rset” are overloaded and can be applied both
to coalitions Ĉ of arguments and to coalitions Ĉ of structures. Formally, ĉlset(Ĉ) = {cl(S)|S ∈ Ĉ},
and p̂rset(Ĉ) =

⋃
S∈Ĉ pr(S). Next, we specify the notion of conflict between coalitions of structures

as a generalization, since one of them has to be necessarily a singleton. This is required to preserve
conflict minimality.

Definition 10 (Conflict) Let 〈U,A〉 ⊆ 2Args × 2Args be a DAF, and Ĉ1 and Ĉ2, two minimal, and
consistent coalitions of structures in U verifying:

a) |Ĉ1| = 1, or |Ĉ2| = 1, and

b) p̂rset(Ĉ1) |= p̂rset(Ĉ2) (dependency), or ĉlset(Ĉ1) |= p̂rset(Ĉ2) (support).

Coalitions Ĉ1 and Ĉ2 are in conflict iff every structure S ⊆ (Ĉ1 ∪ Ĉ2), is the smallest S needed to
guarantee either:

(claim-conflict) ĉlset(Ĉ1) ∪ ĉlset(Ĉ2) |= ⊥, or

(premise-conflict) ĉlset(Ĉ1) ∪ p̂rset(Ĉ2)) |= ⊥.

Example 4 Assume we have arguments B1 = 〈{A1(x), A2(x)}, B(x)〉, B2 = 〈{A3(x)}, A1(x)〉,
and B3 = 〈{A3(x)},¬A2(x)〉, then two structures S1 = {B1,B2} and S2 = {B3} appear. The
trivial coalitions Ĉ1 = {S1} and Ĉ2 = {S2} model a premise-conflict. Note that p̂rset(Ĉ1) =

{A3(x), A2(x)}, p̂rset(Ĉ2) = {A3(x)}, and ĉlset(Ĉ2) = {¬A2(x)}.
Assume now that we have arguments B1 and B2, and a different B′3 = 〈{A3(x)},¬B(x)〉. It is

easy to verify that a claim-conflict will be modeled from Ĉ1 and {{B′3}}.

Note that both conflicts in Ex. 4 come from dependency (c.f. Def. 10b). An example of claim-
conflict from support appears in Ex. 2. It is clear that no premise-conflict from support is possible
since both support and premise-conflict conditions cannot be mutually verified.

Deciding which coalition of structures succeeds between a conflicting pair, requires a comparison
criterion. Such a criterion could be defined for instance, upon entrenchment of knowledge, i.e., that
the knowledge engineer may give different levels of importance to individual pieces of knowledge.
In that sense, we will assume there exists a partial order of arguments called argument comparison
criterion “<”, such that B1<B2 states that B1 has more priority than B2. Afterwards, two conflictive
coalitions of structures Ĉ1 and Ĉ2 are assumed to be ordered by a function “pref” relying on “<”,

where pref(Ĉ1, Ĉ2) = (Ĉ1, Ĉ2) implies the attack relation Ĉ1RĈ2, i.e., Ĉ1 is a defeater of (or it
defeats) Ĉ2. Note that when no pair of arguments is related by “<”, both Ĉ1RĈ2 and Ĉ2RĈ1 appear
from any conflicting pair Ĉ1 and Ĉ2.

Definition 11 (Attack Relation Set) The set R of attack relations is defined as R = {(Ĉ1, Ĉ2) | Ĉ1

and Ĉ2 are in conflict and pref(Ĉ1, Ĉ2) = (Ĉ1, Ĉ2)}.

Regarding the active condition of the components of the framework, a structure is active iff all
its arguments are active. This notion is also extended to coalitions of structures by considering a
coalition Ĉ active iff all its structures are active. Finally, an attack relation Ĉ1RĈ2 is active iff both
Ĉ1 and Ĉ2 are active. That is, if (Ĉ1, Ĉ2) ∈ RA ⊆ R then Ĉ1, Ĉ2 ⊆ A, where RA is the set standing
for every active attack relation in R.

Example 5 Assume the DAF 〈U,A〉 is determined as U = A = {B1, B2, B3, B4, B5, B6, B7}, where
B1 = 〈{}, R(a, b)〉, B2 = 〈{}, R(b, c)〉, B3 = 〈{}, R(c, d)〉, B4 = 〈{}, A(a)〉, B5 = 〈{},¬A(c)〉,
B6 = 〈{},¬A(d)〉, B7 = 〈{A(x)}, (∀y)(R(x, y) → A(y))〉.

The argumental structure S1 = {B4,B7} appears. Later on, the set Ĉ1 = {B7,B1} is a supporting-
coalition of B7 through A(b), Ĉ2 = {B7,B2} is a supporting-coalition of B7 through A(c), and
Ĉ3 = {B7,B3} is a supporting-coalition of B7 through A(d). Hence, the schematic structures
S2 = {B7,B1}, S3 = {B7,B2}, and S4 = {B7,B3}, appear with cl(S2) = R(a, b) → A(b),
cl(S3) = R(b, c) → A(c), and cl(S4) = R(c, d) → A(d); and premises pr(S2) = A(a), pr(S3) =
A(b), and pr(S4) = A(c). Thus, appear the related argumental structures S5 = {B4,B7,B1},
S6 = {B4,B7,B1,B2}, and S7 = {B4,B7,B1,B2,B3}, where S2ES5, S3ES6, and S4ES7, as well
as S5ES6, and S6ES7. Note also that, S1 is sub-structure of S5, S6, and S7. Besides, from S6, the

supporting-chain for A(x) in X is X A(c)←− {X ,B2} A(b)←− {X ,B1} A(a)←− {B4}.
Consider now the coalitions of structures Ĉ1 = {{B2}, {B5}}, and Ĉ2 = {{B3}, {B6}}. As-

suming B7<Bi, i ∈ {1, . . . , 6}, the following attack relations appear: {S5}RĈ1 and {S6}RĈ2

(refer to Fig. 1). Later on, considering also the coalitions of structures Ĉ3 = {S5, {B2}}, and
Ĉ4 = {S6, {B3}}, attacks Ĉ3R{{B5}} and Ĉ4R{{B6}} appear.

B
4

∅

S
2

S
5

∅

B
7

B
7
B
1

B
2

∅

B
5

∅

Ĉ
1

B
3

∅

B
6

∅

S
3

S
5 S

6

∅

∅

B
7

B
7

B
2

S
2

B
1

B
7

B
4

∅

Ĉ
2

Figure 1: Some attacks from Ex. 5. Multiple occurrences of an argument within a structure refer to
its different instances determined by every possible variable substitution.

3 Ontology Debugging Through the DAF
In what follows we propose a reification of the generalized DAF to the description logic ALC. After-
wards, since some basic elements from argumentation like attack and support may allow to manage
inconsistencies in ontologies, we propose an acceptability semantics for arguments in order to obtain
a related maximal consistent ontology.

3.1 Reifying the Generalized DAF to ALC DL
Before presenting the reification subtleties, a very brief overview of the ALC DL will be given, for
more detailed information refer to [2]. An interpretation I = (∆I, ·I) consists of a nonempty domain
∆I, and an interpretation function ·I that maps every concept to a subset of ∆I, every role to a subset
of ∆I ×∆I, and every individual to an element of ∆I.

Symbols A,A1, A2, . . . and B,B1, B2, . . . are used to denote atomic DL concepts, C, C1, C2, . . .
and D,D1, D2, . . ., to denote general DL concepts, and R,R1, R2, . . ., to denote atomic DL roles.
The description language ALC is formed by concept definitions according to the syntax C,D ::=
A|⊥|>|¬C|C u D|C t D|∀R.C|∃R.C where the interpretation function ·I is extended to the uni-
versal concept as >I = ∆I; the bottom concept as ⊥I = ∅; the full negation or complement as
(¬C)I = ∆I\CI; the intersection as (C uD)I = CI ∩DI; the union as (C tD)I = CI ∪DI; the
universal quantification as (∀R.C)I = {a ∈ ∆I|∀b.(a, b) ∈ RI → b ∈ CI}; and the full existential
quantification as (∃R.C)I = {a ∈ ∆I|∃b.(a, b) ∈ RI ∧ b ∈ CI}.

An ontology is a pair O = 〈T ,A〉, where T represents the TBox, containing the terminologies
(or axioms) of the application domain, and A, the ABox, which contains assertions about named
individuals in terms of these terminologies. Regarding the TBox T , axioms are sketched as C v
D and C ≡ D, therefore, an interpretation I satisfies them whenever CI ⊆ DI and CI = DI

respectively. An interpretation I is a model for the TBox T if I satisfies all the axioms in T . Thus,
the TBox T is said to be satisfiable if it admits a model. Besides, in the ABox A, I satisfies C(a)
if a ∈ CI, and R(a, b) if (a, b) ∈ RI. An interpretation I is said to be a model of the ABox A if
every assertion ofA is satisfied by I. Hence, the ABoxA is said to be satisfiable if it admits a model.
Finally, regarding the entire ontology, an interpretation I is said to be a model ofO if every statement
in O is satisfied by I, and O is said to be satisfiable if it admits a model.

Moreover, the different classes of inconsistencies in an ontology may be characterized as follows.
Given an ontology O, a concept C is unsatisfiable iff for each interpretation I ∈ M(O), CI = ∅.
As stated in [6], an ontology O is incoherent iff there exists an unsatisfiable concept in O. An
incoherence may be considered a kind of inconsistency in the TBox. However, the incoherence
does not replace the classical meaning of inconsistency, given that an incoherent ontology may admit
models. Hence, an ontology O is inconsistent iff it admits no model.

An ontology contains implicit knowledge that is made explicit through inferences. The notion
of semantic entailment is given by O |= α, meaning that every model of the ontology O is also a
model of the statement α. Formally, (semantic entailment) O |= α iff M(O) ⊆ M({α}). Just for
simplicity, we shall abuse notation writing O = T ∪ A (eg., O = {C v D, A(a)}) to identify an
ontology O = 〈T ,A〉 (eg., O = 〈{C v D}, {A(a)}〉).

The following grammars are proposed in order to specify the argument language used to represent
ALC-based ontologies into a dynamic argumentation framework (DAF) for DLs.

φ ::= >|A|¬A|∀R.Ldisj |∃R.Lconj

Lconj ::= φ|Lconj u Lconj Ldisj ::= φ|Ldisj t Ldisj

Lpr ::= φ(Lvar) Lcl ::= Ldisj(Lvar)|R(Lvar,Lvar)
Lvar ::= a|b|x|y Args ::= 2Lpr × Lcl

In order to obtain a DAF from an ALC ontology O, it is needed to translate each axiom in O to
negation normal form, so that negation appears only in front of atomic concepts. Afterwards, each
axiom should turn to disjunctive normal form for the left-hand-side (lhs) part of the description, and
to conjunctive normal form for its right-hand-side (rhs), conforming axioms lhs v rhs or lhs ≡ rhs,
where lhs ::= ⊥|Lconj t . . . t Lconj and rhs ::= ⊥|Ldisj u . . . u Ldisj , referred as pre-argumental
normal form (pANF). An ontology in pANF could trigger multiple arguments from each axiom, as
states the following intuition: each lhs disjunction (in Lconj) is interpreted as a set of premises Lpr–
one for each conjunction– and each rhs conjunction (in Ldisj), as a claim in Lcl (c.f. Ex. 6). Concept
equivalences as C1 ≡ C2, are assumed as pairs C1 v C2 and C2 v C1. Inclusions ⊥ v C and
C v ⊥, are assumed as ¬C v > and > v ¬C, respectively, given that arguments cannot accept ⊥ in
any of their components (c.f. consistency in Def. 2). Finally, any assertion A(a) triggers an evidence
〈{}, A(a)〉. A formal specification of a systematic translation was left out due to space reasons.

Example 6 Let (A1 u A2) t (∀R1.A3 u ∃R2.∀R3.¬A4) v (A1 t A2) u A5 be an axiom con-
forming the pANF. Four arguments appear in the related DAF: 〈{A1(x), A2(x)}, (A1 t A2)(x)〉,
〈{(∀R1.A3)(x), (∃R2.∀R3.¬A4)(x)}, (A1 t A2)(x)〉, 〈{A1(x), A2(x)}, A5(x)〉, and 〈{(∀R1.A3)(x),
(∃R2.∀R3.¬A4)(x)}, A5(x)〉.

Given an ALC ontology O, a function daf : ALC½2Args × 2Args is the mapping daf(O) =
〈U,A〉 following the translation methodology described before. That is, O is turned into pANF, and
thus the DAF is obtained where every argument identified appears active, i.e., A = U. Furthermore,
we define as ALCArgs to the logic for ontologies O ⊆ LT × LA, using LT ::= Lconj v Ldisj for
axioms and LA ::= A(Lvar)|¬A(Lvar)|R(Lvar,Lvar) for assertions. It is clear that any ALCArgs
ontology conforms the ALC DL, and it is always in pANF. Moreover, we will assume a function af :
ALC½ALCArgs, the argumental-DL function that translates anyALC ontologyO into an equivalent
ALCArgs ontology af(O). A desirable property of an ALCArgs ontology is that each statement in it
generates a single argument in its related DAF, except for obvious unsatisfiable inclusions as A v ¬A,
which are filtered by consistency in Def. 2 –triggering no related argument in the DAF.

Proposition 1 1 Let O and O′ be two ontologies. If O conforms the logic ALC, and O′ conforms
ALCArgs then

a) O′ conforms the logic ALC and is in pANF,
b) If af(O) = O′ then O is equivalent to O′, and
c) If O conforms the logic ALCArgs then |O| ≥ |U| where daf(O) = 〈U,A〉.

Notice that, from an ontologyO = {A ≡ B} a situation like that in Ex. 3 occurs, where (structure)
acyclicity manages to handle a cyclic terminology. A similar case occurs with an axiom as A v A.

3.2 An Argumentation Semantics as Debugging Tool
In an ontology, inconsistency implies that there are contradictory concept definitions, or assertions
that will lead to conflicting arguments within the equivalent DAF. Thus, once the translation is per-
formed, each inconsistency in the original ontology will be reflected as an attack in the resulting DAF.
Since the objective of converting an ontology to an argumentation framework is to remove inconsis-
tency from the former, there is a need for a mechanism that allows us to obtain those arguments that

1In this work, proofs will be omitted due to space reasons.

prevail over the rest. That is, those arguments that can be consistently assumed together, following
some policy. For instance, structures with no defeaters should always prevail, since there is nothing
strong enough to be posed against them. The tool we need to resolve inconsistency of concept defini-
tions via an argumentation framework is the notion of acceptability of arguments, which is defined on
top of an argumentation semantics [3]. There are several well-known argumentation semantics, such
as the grounded, the stable, and the preferred semantics [5]. These semantics ensure the obtention of
a consistent set of arguments, namely an extension. That is, the set of accepted arguments calculated
following any of these semantics is such that no pair of conflictive arguments appears in that same
extension. Finally, when we translate an ontology to a DAF, all what is left to do to resolve inconsis-
tencies is to calculate the set of accepted arguments following some semantics, which is going to be
translated back to a consistent ontology. It is important to notice that the chosen semantics will greatly
affect the resulting ontology. Moreover, problems like multiple extensions from semantics like both
the stable and the preferred may appear, requiring to make a choice among them. On the other hand,
the outcome of the grounded semantics is always a single extension, which could be empty. Finally,
since dealing with multiple extensions is a problem that falls outside the scope of this article, we will
choose the grounded semantics, which can be implemented with a simple algorithm. Consequently,
we define a mapping sem : 2Args × 2Args½2Args × 2Args, that intuitively behaves as follows.

For every pair of active attack (Ĉ1, Ĉ2) ∈ RA, if there is no active coalition of structures defeating
Ĉ1 (undefeat), then we deactivate some argument from some structure in Ĉ2 (deactivation). As a
side-effect, any attack (Ĉ2, Ĉ3) will disappear. This process is recursively applied on RA until every
attack relation is deactivated. As stated before, the outcome of a grounded semantics could be an
empty extension. Such an issue arises when there is a loop in the structures attack graph. To overcome
this, if undefeat is not verified for any (Ĉ1, Ĉ2) ∈ RA, then deactivation is applied to some active
attack. Thus, the loop is broken, and the process determined by applying “sem” can be reconsidered.

Proposition 2 Given a DAF T ⊆ 2Args × 2Args, if sem(T) = 〈U,A〉 then RA = ∅.

Let “ont” be a mapping from a DAF 〈U,A〉 ⊆ 2Args × 2Args to an ALC ontology ont(〈U,A〉),
following backwards the intuitions given to obtain a DAF by “daf”. Consistency-coherency of the
ont-outcome is related to the attacks in the DAF by Prop. 3.

Proposition 3 Given a DAF 〈U,A〉 where A ⊆ U ⊆ 2Args, RA = ∅ iff ont(〈U,A〉) is a consistent-
coherent ALC ontology.

Lemma 1 Given a DAF T ⊆ 2Args × 2Args, ont(sem(T)) is a consistent-coherent ALC ontology.

The relation stated in Prop. 3 along with that in Prop. 2 motivates Lemma 1. Theorem 1 states
the main contribution of theALC-Based DAF regarding ontology debugging. Afterwards, Corollary 1
relates that result through “af”. Finally, in examples 7 and 8, the methodology here proposed for
ontology debugging is applied.

Theorem 1 Given anALC ontologyO, ifO is inconsistent and\or incoherent then ont(sem(daf(O)))
is a related consistent-coherent ALC ontology.

Corollary 1 Given an inconsistent-incoherent ALC ontology O, there exists a related consistent-
coherent ontology O′, such that af(O′) ⊆ af(O).

Example 7 Let O = {A1 v B1 u B2, A2 v A1 u ¬B2, A1(a), B1(a), ¬B2(a), A2(a)} be an ALC
ontology, we want to debugO to obtain a related consistent-coherent ontologyOR. Applying daf(O),
a DAF 〈U,A〉, where U = A appears:

Statement Args.
A1 v B1 uB2 {B1,B2}
A2 v A1 u ¬B2 {B3,B4}
A1(a) {B5}
B1(a) {B6}
¬B2(a) {B7}
A2(a) {B8}

S
4

S
5

S
3

S
6

S
1

S
2

B1 = 〈{A1(x)}, B1(x)〉
B2 = 〈{A1(x)}, B2(x)〉
B3 = 〈{A2(x)}, A1(x)〉
B4 = 〈{A2(x)},¬B2(x)〉
B5 = 〈{}, A1(a)〉
B6 = 〈{}, B1(a)〉
B7 = 〈{},¬B2(a)〉
B8 = 〈{}, A2(a)〉

Consider the structures S1 = {B3,B2}, S2 = {B8} ∪ S1, S3 = {B8,B4}, and S4 = {B5,B2}; and
the primitive structures S5 = {B4} and S6 = {B7}.Assuming B2<B4 and B2<B7, the attack relation
set is R = {({S1}, {S5}), ({S2}, {S6}), ({S4}, {S6}), ({S4}, {S3})} (see the graph depicted above).
Note that ({S2}, {S3}) is not in R given that S1ES2, S5ES3, and ({S1}, {S5}) ∈ R (c.f. Def. 10).

The acceptability analysis determines S3, S5, and S6 to be deactivated, and since S5ES3, deac-
tivating B4 and B7 is enough. Afterwards, sem(daf(O)) determines the new set of active arguments
{B1,B2,B3,B5,B6,B8}. Finally, following the table above, the operation ont(sem(daf(O))) con-
structs the repaired ontology OR = {A1 v B1 uB2, A2 v A1, A1(a), B1(a), A2(a)}.

Note that, assuming B7<B2<B4, conflicts involving S6 are inverted leading to ({S6}, {S2}) and
({S6}, {S4}). In such a case, only B2 would be deactivated.

Example 8 (Ex. 5 cont.) Assuming an ontologyO = {R(a, b), R(b, c), R(c, d), A(a),¬A(c),¬A(d),
A v ∀R.A}, and applying daf(O), the DAF 〈U,A〉 is determined as stated in Ex. 5, changing argu-
ment B7 to 〈{A(x)}, (∀R.A)(x)〉. The rest of the example coincides. Consequently, the acceptability
analysis determines coalitions Ĉ1, Ĉ2, {{B5}}, and {{B6}} to deactivate. Later on, the deactiva-
tion of B5 and B6 deactivates every attack. Afterwards, sem(daf(O)) determines the set of active
arguments as {B1,B2,B3,B4,B7}. Finally, the operation ont(sem(daf(O))) constructs the debugged
ontology OR = {A v ∀R.A, R(a, b), R(b, c), R(c, d), A(a)}.

Assuming also B5<B2 and B6<B6, {{B5}}RĈ3 and {{B6}}RĈ4 appear along with the attacks
from Fig. 1. Hence, only B2 and B3 would be deactivated.

4 Related and Future Work
Debugging of terminologies is usually focused on the recognition of sources of concept-unsatisfiability.
In this sense, the union of conflictive coalitions of structures presented in this work, may be related to
constructions like minimal inconsistent preserving sub-terminologies (MIPS) [19], which have been
previously used in ontology debugging [18] and change [13]. MIPS may be also related to works
in ontology integration [9], and debugging like [10], where maximally concept-satisfiable subsets
(MCSS) were proposed for that matter.

It is interesting to extend this proposal beyond the scope of ontology debugging to that of the
entire ontology change. For instance, ontology evolution could benefit from this approach. To this
matter, ⊥-Kernel Sets [7] (minimal sets inferring ⊥), may be also related to the union of conflictive
coalitions of structures. Moreover, in works like [15, 13, 11], incision functions are used to cut the
appropriate piece of knowledge from every kernel such that every source of inconsistency would
disappear. In that sense, the function “sem” deactivates the appropriate argument from each attack in
order to deactivate every possible argument conflict from the DAF, just like incision functions do.

Further implementations of the model here presented could be done (1) as a module to be in-
corporated to the DL reasoner, or (2) as a DL-argumentation reasoner. For the second option, a DL

reasoner based on argumentation could be an interesting alternative to those like RACER, FaCT, and
FaCT++. Although a negotiation based approach was proposed in [14], to our knowledge there is no
approach of reasoning about DLs based directly on argumentation. Such an approach would cope “on
the fly” with the decision of what to keep or discard from different sources of information without
applying any changes to them. Moreover, an ontology may keep inconsistencies leaving its resolution
up to the argumentation reasoning process, that is, the ontology reasoning machinery would manage
to dynamically handle inconsistency. This exposes an interesting proposal to incorporate to the se-
mantic web the most characteristic feature of argumentation reasoners: to keep inconsistency while
managing to reason on top of it.

As mentioned before, the grounded semantics [5] could return empty extensions. For instance,
refer to Ex. 7 assuming an empty comparison criterion “<”. Thus, the usage of different semantics
[3] could be studied to overcome this issue. Future work also involves a deep investigation on the
applicability of the generalized DAF wrt. higher expressive fragments of FOL.

5 Conclusion
The proposal of a generalized DAF appears interesting to keep the advantages of usual DAFs [17, 16],
along with the facility of abstracting away from the formal specification of the logic used to represent
knowledge in arguments. In this sense, the notion of coalitions was introduced to characterize sets of
arguments supporting a premise. A coalition of structures was also formalized in order to recognize
some set of structures that in conjunction introduce a conflict wrt. another argument in the DAF. Such
notions allow to generalize classic argumentation elements [5] like attack and support.

Besides (ground) arguments from usual DAFs, schematic arguments are also presented. This is
a necessary extension to provide an analogy to basic FOL elements like polyadic predicates, which
may consider several parameters. Recall that structures in usual DAFs are equivalent to classical
arguments in an abstract framework like that of Dung [5]. In this proposal, since schematic structures
are proposed, the notion of structures is slightly modified by allowing them to exist despite they keep
free premises. Therefore, only argumental structures are comparable to classical arguments, given
that both share the same property: the claim is reached from a satisfied set of premises.

Different classes of attack were also proposed, and in particular, the attack of schematic structures,
which recognize a conflict in advance. That is, conflicts are identified wrt. the smallest possible
structures, irrespective of any bigger argumental structure.

Dynamic argumentation frameworks add its most important feature to classic argumentation frame-
works: dynamism. In this sense, a DAF may be defined specially to cope with specific logics for argu-
ments, but as a consequence of the dynamism it handles, a tool to deal with change in the framework
is provided. In this sense, a reification of the generalized DAF to the ALC DL, renders an interesting
methodology to handle ontology change. As a preliminary result, we proposed a novel theoretical
approach to cope with ontology debugging through argumentation, although it seems to be useful to
other subareas of ontology change like ontology evolution, as well as integration.

References
[1] F. Baader. Logic-Based Knowledge Representation. In Artificial Intelligence Today, pages 13–

41. 1999.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. Descrip-
tion Logic Handbook: Theory, Implementation and Application. Cambridge University Press,
Cambridge, 2003.

[3] P. Baroni and M. Giacomin. On Principle-Based Evaluation of Extension-Based Argumentation
Semantics. Artificial Intelligence, 171(10-15):675–700, 2007.

[4] A. Borgida. On the relative expressiveness of description logics and predicate logics. Artif.
Intell., 82(1-2):353–367, 1996.

[5] P. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Rea-
soning and Logic Programming and n-person Games. Artificial Intelligence, 77:321–357, 1995.

[6] G. Flouris, Z. Huang, J. Z. Pan, D. Plexousakis, and H. Wache. Inconsistencies, Negations and
Changes in Ontologies. In AAAI, pages 1295–1300, 2006.

[7] S. O. Hansson. Kernel Contraction. Journal of Symbolic Logic, 59:845–859, 1994.

[8] C. Lutz, U. Sattler, and F. Wolter. Description Logics and the Two-Variable Fragment. In
Description Logics, 2001.

[9] T. Meyer, K. Lee, and R. Booth. Knowledge Integration for Description Logics. In AAAI, pages
645–650, 2005.

[10] T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding Maximally Satisfiable Terminologies for the
Description Logic ALC. In AAAI, 2006.

[11] M. Moguillansky, M. Falappa, and G. Simari. Model-Based Contractions for Description Log-
ics. In NMR, 2008 (to appear).

[12] M. Mortimer. On Languages with Two Variables. Zeitschr. f. math. Logik und Grundlagen d.
Math., 21:135–140, 1975.

[13] G. Qi, P. Haase, Z. Huang, and J. Z. Pan. A Kernel Revision Operator for Terminologies. In DL,
2008.

[14] G. Qi, W. Liu, and D. A. Bell. Combining multiple prioritized knowledge bases by negotiation.
Fuzzy Sets and Systems, 158(23):2535–2551, 2007.

[15] M. M. Ribeiro and R. Wassermann. Base Revision in Description Logics - prelimimnary results.
In IWOD, 2007.

[16] N. Rotstein, M. Moguillansky, M. Falappa, A. Garcı́a, and G. Simari. Argument Theory Change:
Revision Upon Warrant. In COMMA, pages 336–347, 2008.

[17] N. Rotstein, M. Moguillansky, A. Garcı́a, and G. Simari. An Abstract Argumentation Frame-
work for Handling Dynamics. In NMR, 2008 (to appear).

[18] S. Schlobach. Debugging and Semantic Clarification by Pinpointing. In ESWC, pages 226–240,
2005.

[19] S. Schlobach and R. Cornet. Non-Standard Reasoning Services for the Debugging of Descrip-
tion Logic Terminologies. In IJCAI, pages 355–362, 2003.

