441 research outputs found

    A Newly Developed Tri-Leaflet Polymeric Heart Valve Prosthesis.

    Get PDF
    The potential of polymeric heart valves (PHV) prostheses is to combine the hemodynamic performances of biological valves with the durability of mechanical valves. The aim of this work is to design and develop a new tri-leaflet prosthetic heart valve (HV) made from styrenic block copolymers. A computational finite element model was implemented to optimize the thickness of the leaflets, to improve PHV mechanical and hydrodynamic performances. Based on the model outcomes, 8 prototypes of the designed valve were produced and tested in vitro under continuous and pulsatile flow conditions, as prescribed by ISO 5840 Standard. A specially designed pulse duplicator allowed testing the PHVs at different flow rates and frequency conditions. All the PHVs met the requirements specified in ISO 5840 Standard in terms of both regurgitation and effective orifice area (EOA), demonstrating their potential as HV prostheses.This work was funded by the British Heart Foundation (New Horizons NH/11/4/29059).This is the final published version. It first appeared at http://www.worldscientific.com/doi/abs/10.1142/S0219519415400096?src=recsys

    Fluid dynamic characterization of a polymeric heart valve prototype (Poli-Valve) tested under continuous and pulsatile flow conditions.

    Get PDF
    PURPOSE: Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy; the latter display better fluid dynamic behavior but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the hemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of 2 groups of newly developed supra-annular, trileaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. METHODS: 2 types of Poli-Valves made of SBC and differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. A pulse duplicator designed ad hoc allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the behavior of the valve. RESULTS: Both types of Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by the ISO 5840 Standard. Results were compared with 5 mechanical heart valves (MHVs) and 5 tissue heart valves (THVs), currently available on the market. CONCLUSIONS: Based on these results, PHVs based on styrenic block copolymers, as are Poli-Valves, can be considered a promising alternative for heart valve replacement in the near future.This work was funded by the British Heart Foundation, New Horizons grant NH/11/4/29059.This is the final version of the article. It first appeared from Wichtig Publishing via http://dx.doi.org/10.5301/ijao.500045

    A bio-inspired microstructure induced by slow injection moulding of cylindrical block copolymers.

    Get PDF
    It is well known that block copolymers with cylindrical morphology show alignment with shear, resulting in anisotropic mechanical properties. Here we show that well-ordered bi-directional orientation can be achieved in such materials by slow injection moulding. This results in a microstructure, and anisotropic mechanical properties, similar to many natural tissues, making this method attractive for engineering prosthetic fibrous tissues. An application of particular interest to us is prosthetic polymeric heart valve leaflets, mimicking the shape, microstructure and hence performance of the native valve. Anisotropic layers have been observed for cylinder-forming block copolymers centrally injected into thin circular discs. The skin layers exhibit orientation parallel to the flow direction, whilst the core layer shows perpendicularly oriented domains; the balance of skin to core layers can be controlled by processing parameters such as temperature and injection rate. Heart valve leaflets with a similar layered structure have been prepared by injection moulding. Numerical modelling demonstrates that such complex orientation can be explained and predicted by the balance of shear and extensional flow.This is the author-accepted manuscript. It will be under embargo for 12 months after publication. The final version of this article is published by RSC in Soft Matter and can be found here: http://pubs.rsc.org/en/Content/ArticleLanding/2014/SM/C4SM00884G#!divAbstract

    Impacts of habitat heterogeneity on the provision of multiple ecosystem services in a temperate floodplain

    Get PDF
    The relationships between habitat heterogeneity and the provision of multiple ecosystem services are not well understood. This study investigates the impacts of heterogeneity in surface floodwater inundation on the productive efficiency of ecosystem service provision, and the degree to which the relative provision of these ecosystem services is evenly balanced. We analyse indicators of five services. Field data from 100 floodplain quadrats were first analysed to investigate relationships between ecosystem service indicators and floodplain hydrology. Floodplain mosaics of varying hydrological heterogeneity were then simulated using the empirical data. Simulated floodplains with higher hydrological heterogeneity were generally less efficient in providing the target indicators, because they were adapted to the particular hydrological ranges which best provided the target services. Simulated floodplains that were more heterogeneous generally provided more even levels of the target indicators by segregating provision into different habitat types. Heterogeneity in floodplain hydrology may help to balance provision of multiple ecosystem services. However, management of hydrological heterogeneity to achieve this requires a detailed understanding of the relationships between each service and habitat conditions

    Governance, regulation and financial market instability: the implications for policy

    Get PDF
    Just as the 1929 Stock Market Crash discredited Classical economic theory and policy and opened the way for Keynesianism, a consequence of the collapse of confidence in financial markets and the banking system—and the effect that this has had on the global macro economy—is currently discrediting the ‘conventional wisdom’ of neo-liberalism. This paper argues that at the heart of the crisis is a breakdown in governance that has its roots in the co-evolution of political and economic developments and of economic theory and policy since the 1929 Stock Market Crash and the Great Depression that followed. However, while many are looking back to the Great Depression and to the theories and policies that seemed to contribute to recovery during the first part of the twentieth century, we argue that the current context is different from the earlier one; and there are more recent events that may provide better insight into the causes and contributing factors giving rise to the present crisis and to the implications for theory and policy that follow
    corecore