66 research outputs found
Flow Ambiguity: A Path Towards Classically Driven Blind Quantum Computation
Blind quantum computation protocols allow a user to delegate a computation to
a remote quantum computer in such a way that the privacy of their computation
is preserved, even from the device implementing the computation. To date, such
protocols are only known for settings involving at least two quantum devices:
either a user with some quantum capabilities and a remote quantum server or two
or more entangled but noncommunicating servers. In this work, we take the first
step towards the construction of a blind quantum computing protocol with a
completely classical client and single quantum server. Specifically, we show
how a classical client can exploit the ambiguity in the flow of information in
measurement-based quantum computing to construct a protocol for hiding critical
aspects of a computation delegated to a remote quantum computer. This ambiguity
arises due to the fact that, for a fixed graph, there exist multiple choices of
the input and output vertex sets that result in deterministic measurement
patterns consistent with the same fixed total ordering of vertices. This allows
a classical user, computing only measurement angles, to drive a
measurement-based computation performed on a remote device while hiding
critical aspects of the computation.Comment: (v3) 14 pages, 6 figures. expands introduction and definition of
flow, corrects typos to increase readability; contains a new figure to
illustrate example run of CDBQC protocol; minor changes to match the
published version.(v2) 12 pages, 5 figures. Corrects motivation for
quantities used in blindness analysi
Which graph states are useful for quantum information processing?
Graph states are an elegant and powerful quantum resource for measurement
based quantum computation (MBQC). They are also used for many quantum protocols
(error correction, secret sharing, etc.). The main focus of this paper is to
provide a structural characterisation of the graph states that can be used for
quantum information processing. The existence of a gflow (generalized flow) is
known to be a requirement for open graphs (graph, input set and output set) to
perform uniformly and strongly deterministic computations. We weaken the gflow
conditions to define two new more general kinds of MBQC: uniform
equiprobability and constant probability. These classes can be useful from a
cryptographic and information point of view because even though we cannot do a
deterministic computation in general we can preserve the information and
transfer it perfectly from the inputs to the outputs. We derive simple graph
characterisations for these classes and prove that the deterministic and
uniform equiprobability classes collapse when the cardinalities of inputs and
outputs are the same. We also prove the reversibility of gflow in that case.
The new graphical characterisations allow us to go from open graphs to graphs
in general and to consider this question: given a graph with no inputs or
outputs fixed, which vertices can be chosen as input and output for quantum
information processing? We present a characterisation of the sets of possible
inputs and ouputs for the equiprobability class, which is also valid for
deterministic computations with inputs and ouputs of the same cardinality.Comment: 13 pages, 2 figure
Generalized Flow and Determinism in Measurement-based Quantum Computation
We extend the notion of quantum information flow defined by Danos and Kashefi
for the one-way model and present a necessary and sufficient condition for the
deterministic computation in this model. The generalized flow also applied in
the extended model with measurements in the X-Y, X-Z and Y-Z planes. We apply
both measurement calculus and the stabiliser formalism to derive our main
theorem which for the first time gives a full characterization of the
deterministic computation in the one-way model. We present several examples to
show how our result improves over the traditional notion of flow, such as
geometries (entanglement graph with input and output) with no flow but having
generalized flow and we discuss how they lead to an optimal implementation of
the unitaries. More importantly one can also obtain a better quantum
computation depth with the generalized flow rather than with flow. We believe
our characterization result is particularly essential for the study of the
algorithms and complexity in the one-way model.Comment: 16 pages, 10 figure
Generalized Flow and Determinism in Measurement-based Quantum Computation
We extend the notion of quantum information flow defined by Danos and Kashefi
for the one-way model and present a necessary and sufficient condition for the
deterministic computation in this model. The generalized flow also applied in
the extended model with measurements in the X-Y, X-Z and Y-Z planes. We apply
both measurement calculus and the stabiliser formalism to derive our main
theorem which for the first time gives a full characterization of the
deterministic computation in the one-way model. We present several examples to
show how our result improves over the traditional notion of flow, such as
geometries (entanglement graph with input and output) with no flow but having
generalized flow and we discuss how they lead to an optimal implementation of
the unitaries. More importantly one can also obtain a better quantum
computation depth with the generalized flow rather than with flow. We believe
our characterization result is particularly essential for the study of the
algorithms and complexity in the one-way model.Comment: 16 pages, 10 figure
Determinism and Computational Power of Real Measurement-based Quantum Computation
International audienceMeasurement-based quantum computing (MBQC) is a universal model for quantum computation. The combinatorial characterisation of determinism in this model, powered by measurements, and hence, fundamentally probabilistic, is the cornerstone of most of the breakthrough results in this field. The most general known sufficient condition for a deterministic MBQC to be driven is that the underlying graph of the computation has a particular kind of flow called Pauli flow. The necessity of the Pauli flow was an open question. We show that the Pauli flow is necessary for real-MBQC, and not in general providing counterexamples for (complex) MBQC. We explore the consequences of this result for real MBQC and its applications. Real MBQC and more generally real quantum computing is known to be universal for quantum computing. Real MBQC has been used for interactive proofs by McKague. The two-prover case corresponds to real-MBQC on bipartite graphs. While (complex) MBQC on bipartite graphs are universal, the universality of real MBQC on bipartite graphs was an open question. We show that real bipartite MBQC is not universal proving that all measurements of real bipartite MBQC can be parallelised leading to constant depth computations. As a consequence, McKague techniques cannot lead to two-prover interactive proofs
Optical generation of matter qubit graph states
We present a scheme for rapidly entangling matter qubits in order to create graph states for one-way quantum computing. The qubits can be simple three-level systems in separate cavities. Coupling involves only local fields and a static (unswitched) linear optics network. Fusion of graph-state sections occurs with, in principle, zero probability of damaging the nascent graph state. We avoid the finite thresholds of other schemes by operating on two entangled pairs, so that each generates exactly one photon. We do not require the relatively slow single qubit local flips to be applied during the growth phase: growth of the graph state can then become a purely optical process. The scheme naturally generates graph states with vertices of high degree and so is easily able to construct minimal graph states, with consequent resource savings. The most efficient approach will be to create new graph-state edges even as qubits elsewhere are measured, in a 'just in time' approach. An error analysis indicates that the scheme is relatively robust against imperfections in the apparatus
Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine glutathione levels and antioxidant enzyme activities in the drug-naive first-episode patients with schizophrenia in comparison with healthy control subjects.</p> <p>Methods</p> <p>It was a case-controlled study carried on twenty-three patients (20 men and 3 women, mean age = 29.3 ± 7.5 years) recruited in their first-episode of schizophrenia and 40 healthy control subjects (36 men and 9 women, mean age = 29.6 ± 6.2 years). In patients, the blood samples were obtained prior to the initiation of neuroleptic treatments. Glutathione levels: total glutathione (GSHt), reduced glutathione (GSHr) and oxidized glutathione (GSSG) and antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) were determined by spectrophotometry.</p> <p>Results</p> <p>GSHt and reduced GSHr were significantly lower in patients than in controls, whereas GSSG was significantly higher in patients. GPx activity was significantly higher in patients compared to control subjects. CAT activity was significantly lower in patients, whereas the SOD activity was comparable to that of controls.</p> <p>Conclusion</p> <p>This is a report of decreased plasma levels of GSHt and GSHr, and impaired antioxidant enzyme activities in drug-naive first-episode patients with schizophrenia. The GSH deficit seems to be implicated in psychosis, and may be an important indirect biomarker of oxidative stress in schizophrenia early in the course of illness. Finally, our results provide support for further studies of the possible role of antioxidants as neuroprotective therapeutic strategies for schizophrenia from early stages.</p
Global and risk-group stratified well-being and mental health during the COVID-19 pandemic in adults: Results from the international COH-FIT Study.
International studies measuring wellbeing/multidimensional mental health before/ during the COVID-19 pandemic, including representative samples for >2 years, identifying risk groups and coping strategies are lacking. COH-FIT is an online, international, anonymous survey measuring changes in well-being (WHO-5) and a composite psychopathology P-score, and their associations with COVID-19 deaths/restrictions, 12 a-priori defined risk individual/cumulative factors, and coping strategies during COVID-19 pandemic (26/04/2020-26/06/2022) in 30 languages (representative, weighted non-representative, adults). T-test, χ <sup>2</sup> , penalized cubic splines, linear regression, correlation analyses were conducted. Analyzing 121,066/142,364 initiated surveys, WHO-5/P-score worsened intra-pandemic by 11.1±21.1/13.2±17.9 points (effect size d=0.50/0.60) (comparable results in representative/weighted non-probability samples). Persons with WHO-5 scores indicative of depression screening (<50, 13% to 32%) and major depression (<29, 3% to 12%) significantly increased. WHO-5 worsened from those with mental disorders, female sex, COVID-19-related loss, low-income country location, physical disorders, healthcare worker occupations, large city location, COVID-19 infection, unemployment, first-generation immigration, to age=18-29 with a cumulative effect. Similar findings emerged for P-score. Changes were significantly but minimally related to COVID-19 deaths, returning to near-pre-pandemic values after >2 years. The most subjectively effective coping strategies were exercise and walking, internet use, social contacts. Identified risk groups, coping strategies and outcome trajectories can inform global public health strategies
The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance
Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
- …
