37 research outputs found

    Treatment of esophageal tumors using high intensity intraluminal ultrasound: first clinical results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Esophageal tumors generally bear a poor prognosis. Radical surgery is generally the only curative method available but is not feasible in the majority of patients; palliative therapy with stent placement is generally performed. It has been demonstrated that High Intensity Ultrasound can induce rapid, complete and well-defined coagulation necrosis. Thus, for the treatment of esophageal tumors, we have designed an ultrasound applicator that uses an intraluminal approach to fill up this therapeutic gap.</p> <p>Methods</p> <p>Thermal ablation is performed with water-cooled ultrasound transducers operating at a frequency of 10 MHz. Single lesions extend from the transducer surface up to 10 mm in depth when applying an intensity of 14 W/cm<sup>2 </sup>for 10s. A lumen inside the therapy applicator provides path for an endoscopic ultrasound imaging probe operating at a frequency of 12 MHz. The mechanical rotation of the applicator around its axis enables treatment of sectorial or cylindrical volumes. This method is thus particularly suitable for esophageal tumors that may develop only on a portion of the esophageal circumference. Previous experiments were conducted from bench to <it>in vivo </it>studies on pig esophagi.</p> <p>Results</p> <p>Here we report clinical results obtained on four patients included in a pilot study. The treatment of esophageal tumors was performed under fluoroscopic guidance and ultrasound imaging. Objective tumor response was obtained in all cases and a complete necrosis of a tumor was obtained in one case. All patients recovered uneventfully and dysphagia improved significantly within 15 days, allowing for resuming a solid diet in three cases.</p> <p>Conclusion</p> <p>This clinical work demonstrated the efficacy of intraluminal high intensity ultrasound therapy for local tumor destruction in the esophagus.</p

    Low-intensity continuous ultrasound triggers effective bisphosphonate anticancer activity in breast cancer

    Get PDF
    Ultrasound (US) is a non-ionizing pressure wave that can produce mechanical and thermal effects. Bisphosphonates have demonstrated clinical utility in bone metastases treatment. Preclinical studies suggest that bisphosphonates have anticancer activity. However, bisphosphonates exhibit a high affinity for bone mineral, which reduces their bioavailability for tumor cells. Ultrasound has been shown to be effective for drug delivery but in interaction with gas bubbles or encapsulated drugs. We examined the effects of a clinically relevant dose of bisphosphonate zoledronate (ZOL) in combination with US. In a bone metastasis model, mice treated with ZOL+US had osteolytic lesions that were 58% smaller than those of ZOL-treated animals as well as a reduced skeletal tumor burden. In a model of primary tumors, ZOL+US treatment reduced by 42% the tumor volume, compared with ZOL-treated animals. Using a fluorescent bisphosphonate, we demonstrated that US forced the release of bisphosphonate from the bone surface, enabling a continuous impregnation of the bone marrow. Additionally, US forced the penetration of ZOL within tumors, as demonstrated by the intratumoral accumulation of unprenylated Rap1A, a surrogate marker of ZOL antitumor activity. Our findings made US a promising modality to trigger bisphosphonate anticancer activity in bone metastases and in primary tumors

    Copy-number-variation and copy-number-alteration region detection by cumulative plots

    Get PDF
    Background: Regions with copy number variations (in germline cells) or copy number alteration (in somatic cells) are of great interest for human disease gene mapping and cancer studies. They represent a new type of mutation and are larger-scaled than the single nucleotide polymorphisms. Using genotyping microarray for copy number variation detection has become standard, and there is a need for improving analysis methods. Results: We apply the cumulative plot to the detection of regions with copy number variation/alteration, on samples taken from a chronic lymphocytic leukemia patient. Two sets of whole-genome genotyping of 317k single nucleotide polymorphisms, one from the normal cell and another from the cancer cell, are analyzed. We demonstrate the utility of cumulative plot in detecting a 9Mb (9 x 10^6 bases) hemizygous deletion and 1Mb homozygous deletion on chromosome 13. We also show the possibility to detect smaller copy number variation/alteration regions below the 100kb range. Conclusions: As a graphic tool, the cumulative plot is an intuitive and a scale-free (window-less) way for detecting copy number variation/alteration regions, especially when such regions are small

    Deciphering Heterogeneity in Pig Genome Assembly Sscrofa9 by Isochore and Isochore-Like Region Analyses

    Get PDF
    Background: The isochore, a large DNA sequence with relatively small GC variance, is one of the most important structures in eukaryotic genomes. Although the isochore has been widely studied in humans and other species, little is known about its distribution in pigs. Principal Findings: In this paper, we construct a map of long homogeneous genome regions (LHGRs), i.e., isochores and isochore-like regions, in pigs to provide an intuitive version of GC heterogeneity in each chromosome. The LHGR pattern study not only quantifies heterogeneities, but also reveals some primary characteristics of the chromatin organization, including the followings: (1) the majority of LHGRs belong to GC-poor families and are in long length; (2) a high gene density tends to occur with the appearance of GC-rich LHGRs; and (3) the density of LINE repeats decreases with an increase in the GC content of LHGRs. Furthermore, a portion of LHGRs with particular GC ranges (50%–51 % and 54%–55%) tend to have abnormally high gene densities, suggesting that biased gene conversion (BGC), as well as time- and energy-saving principles, could be of importance to the formation of genome organization. Conclusion: This study significantly improves our knowledge of chromatin organization in the pig genome. Correlations between the different biological features (e.g., gene density and repeat density) and GC content of LHGRs provide a uniqu

    Organizational Heterogeneity of Vertebrate Genomes

    Get PDF
    Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as “texts” using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter - GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences

    Estimation of respiratory breathing signal from 2D US sequences and 4DCT of the liver

    No full text
    International audienceOne challenge of High Intensity Focused Ultrasound (HIFU) for treating primary liver tumors is the management of the breathing motion during treatment. An extracorporeal HIFU transducer with an integrated ultrasound (US) imaging probe has been specifically designed for treating the liver. The imaging probe produces 2D images and the tumor itself may not always be visible in US images. A pre-operative 4D-Computed Tomography (CT) image is acquired to infer the tumor location. To retrieve spatio-temporal correspondence between the 4DCT and 2D+t US sequences to guide extracorporeal HIFU treatments temporal Principal Component Analysis and Hilbert transform was applied. The correspondence was visually verified by radiologist
    corecore