110 research outputs found
NADP+-dependent dehydrogenase activity of carbonyl reductase on glutathionylhydroxynonanal as a new pathway for hydroxynonenal detoxification.
A NADP+ dependent dehydrogenase activity on 3-glutathionyl-4-hydroxynonanal (GSHNE) was purified to electrophoretic homogeneity from a line of human astrocytoma cells (ADF). Proteomic analysis identified this enzymatic activity as associated with carbonyl reductase 1 (E.C. 1.1.1.184). The enzyme is highly efficient at catalyzing the oxidation of GSHNE (KM33 µM,kcat.405 min-1), as it is practically inactive towards trans-4-hydroxy-2-nonenal (HNE) and other HNE-addicted thiol-containing amino acid derivatives. Combined mass spectrometry and nuclear magnetic resonance spectroscopy analysis of the reaction products revealed that carbonyl reductase oxidizes the hydroxyl group of GSHNE in its hemiacetal form, with the formation of the corresponding 3-glutathionyl-nonanoic-δ-lactone. The relevance of this new reaction catalyzed by carbonyl reductase 1 is discussed in terms of HNE detoxification and the recovery of reducing power
Tumour Cannabinoid CB1 Receptor and Phosphorylated Epidermal Growth Factor Receptor Expression Are Additive Prognostic Markers for Prostate Cancer
BACKGROUND: In cultured prostate cancer cells, down-regulation of epidermal growth factor receptor (EGFR) has been implicated in mediating the antiproliferative effect of the endogenous cannabinoid (CB) ligand anandamide. Using a well-characterised cohort of prostate cancer patients, we have previously reported that expression levels of phosphorylated EGFR (pEGFR-IR) and CB(1) receptor (CB(1)IR) in tumour tissue at diagnosis are markers of disease-specific survival, but it is not known whether the two markers interact in terms of their influence on disease severity at diagnosis and disease outcome. METHODOLOGY/PRINCIPAL FINDINGS: Data from a cohort of 419 patients who were diagnosed with prostate cancer at transurethral resection for voiding difficulties was used. Scores for both tumour CB(1)IR and pEGFR-IR were available in the database. Of these, 235 had been followed by expectancy until the appearance of metastases. For patients scored for both parameters, Cox proportional-hazards regression analyses using optimal cut-off scores indicated that the two measures provided additional diagnostic information not only to each other, but to that provided by the tumour stage and the Gleason score. When the cases were divided into subgroups on the basis of these cut-off scores, the patients with both CB(1)IR and pEGFR-IR scores above their cut-off had a poorer disease-specific survival and showed a more severe pathology at diagnosis than patients with high pEGFR-IR scores but with CB(1)IR scores below the cut-off. CONCLUSIONS/SIGNIFICANCE: These data indicate that a high tumour CB(1) receptor expression at diagnosis augments the deleterious effects of a high pEGFR expression upon disease-specific survival
Anti-nociceptive and desensitizing effects of olvanil on capsaicin-induced thermal hyperalgesia in the rat
Background: Olvanil (NE 19550) is a non-pungent synthetic analogue of capsaicin, the natural pungent ingredient of capsicum which activates the transient receptor potential vanilloid type-1 (TRPV1) channel and was developed as a potential analgesic compound. Olvanil has potent anti-hyperalgesic effects in several experimental models of chronic pain. Here we report the inhibitory effects of olvanil on nociceptive processing using cultured dorsal root ganglion (DRG) neurons and compare the effects of capsaicin and olvanil on thermal nociceptive processing in vivo; potential contributions of the cannabinoid CB1 receptor to olvanil’s anti-hyperalgesic effects were also investigated.
Methods: A hot plate analgesia meter was used to evaluate the anti-nociceptive effects of olvanil on capsaicin-induced thermal hyperalgesia and the role played by CB1 receptors in mediating these effects. Single cell calcium imaging studies of DRG neurons were employed to determine the desensitizing effects of olvanil on capsaicin-evoked calcium responses. Statistical analysis used Student’s t test or one way ANOVA followed by Dunnett’s post-hoctest as appropriate.
Results: Both olvanil (100 nM) and capsaicin (100 nM) produced significant increases in intracellular calcium concentrations [Ca2+]I in cultured DRG neurons. Olvanil was able to des ensitise TRPV1 responses to further capsaicin exposure more effectively than capsaicin. Intra plantar injection of capsaicin (0.1, 0.3 and 1μg) produced a robust TRPV1-dependant thermal hyperalgesia in rats, whilst olvanil (0.1, 0.3 and 1μg) produced no hyperalgesia, emphasizing its lack of pungency. The highest dose of olvanil significantly reduced the hyperalgesic effects of capsaicin in vivo. Intraplantar injection of the selective cannabinoid CB1 receptor antagonist rimonabant (1μg) altered neither capsaicin-induced thermal hyperalgesia nor the desensitizing properties of olvanil, indicating a lack of involvement of CB1receptors.
Conclusions: Olvanil is effective in reducing capsaicin-induced thermal hyperalgesia, probably via directly desensitizingTRPV1 channels in a CB 1 receptor-independent fashion. The results presented clearly support the potential for olvanil in the development of new topical analgesic preparations for treating chronic pain conditions while avoiding the unwanted side effects of capsaicin treatments
In Vivo NMR Metabolic Profiling of Fabrea salina Reveals Sequential Defense Mechanisms against Ultraviolet Radiation
Fabrea salina is a hypersaline ciliate that is known to be among the strongest ultraviolet (UV)-resistant microorganisms; however, the molecular mechanisms of this resistance are almost unknown. By means of in vivo NMR spectroscopy, we determined the metabolic profile of living F. salina cells exposed to visible light and to polychromatic UV-B + UV-A Vis radiation for several different exposure times. We used unsupervised pattern-recognition analysis to compare these profiles and discovered some metabolites whose concentration changed specifically upon UV exposure and in a dose-dependent manner. This variation was interpreted in terms of a two-phase cell reaction involving at least two different pathways: an early response consisting of degradation processes, followed by a late response activating osmoprotection mechanisms. The first step alters the concentration of formate, acetate, and saturated fatty-acid metabolites, whereas the osmoprotection modifies the activity of betaine moieties and other functionally related metabolites. In the latter pathway, alanine, proline, and sugars suggest a possible incipient protein synthesis as defense and/or degeneration mechanisms. We conclude that NMR spectroscopy on in vivo cells is an optimal approach for investigating the effect of UV-induced stress on the whole metabolome of F. salina because it minimizes the invasiveness of the measurement
- …