538 research outputs found
Spurious Shear in Weak Lensing with LSST
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST)
will image 20,000 square degrees of sky in six filter bands every few
nights, bringing the final survey depth to , with over 4 billion
well measured galaxies. To take full advantage of this unprecedented
statistical power, the systematic errors associated with weak lensing
measurements need to be controlled to a level similar to the statistical
errors.
This work is the first attempt to quantitatively estimate the absolute level
and statistical properties of the systematic errors on weak lensing shear
measurements due to the most important physical effects in the LSST system via
high fidelity ray-tracing simulations. We identify and isolate the different
sources of algorithm-independent, \textit{additive} systematic errors on shear
measurements for LSST and predict their impact on the final cosmic shear
measurements using conventional weak lensing analysis techniques. We find that
the main source of the errors comes from an inability to adequately
characterise the atmospheric point spread function (PSF) due to its high
frequency spatial variation on angular scales smaller than in the
single short exposures, which propagates into a spurious shear correlation
function at the -- level on these scales. With the large
multi-epoch dataset that will be acquired by LSST, the stochastic errors
average out, bringing the final spurious shear correlation function to a level
very close to the statistical errors. Our results imply that the cosmological
constraints from LSST will not be severely limited by these
algorithm-independent, additive systematic effects.Comment: 22 pages, 12 figures, accepted by MNRA
Epidermal growth factor receptor expression analysis in chemotherapy-naive patients with advanced non-small-cell lung cancer treated with gefitinib or placebo in combination with platinum-based chemotherapy
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
Outcome in patients perceived as receiving excessive care across different ethical climates: a prospective study in 68 intensive care units in Europe and the USA.
PURPOSE: Whether the quality of the ethical climate in the intensive care unit (ICU) improves the identification of patients receiving excessive care and affects patient outcomes is unknown. METHODS: In this prospective observational study, perceptions of excessive care (PECs) by clinicians working in 68 ICUs in Europe and the USA were collected daily during a 28-day period. The quality of the ethical climate in the ICUs was assessed via a validated questionnaire. We compared the combined endpoint (death, not at home or poor quality of life at 1 year) of patients with PECs and the time from PECs until written treatment-limitation decisions (TLDs) and death across the four climates defined via cluster analysis. RESULTS: Of the 4747 eligible clinicians, 2992 (63%) evaluated the ethical climate in their ICU. Of the 321 and 623 patients not admitted for monitoring only in ICUs with a good (n = 12, 18%) and poor (n = 24, 35%) climate, 36 (11%) and 74 (12%), respectively were identified with PECs by at least two clinicians. Of the 35 and 71 identified patients with an available combined endpoint, 100% (95% CI 90.0-1.00) and 85.9% (75.4-92.0) (P = 0.02) attained that endpoint. The risk of death (HR 1.88, 95% CI 1.20-2.92) or receiving a written TLD (HR 2.32, CI 1.11-4.85) in patients with PECs by at least two clinicians was higher in ICUs with a good climate than in those with a poor one. The differences between ICUs with an average climate, with (n = 12, 18%) or without (n = 20, 29%) nursing involvement at the end of life, and ICUs with a poor climate were less obvious but still in favour of the former. CONCLUSION: Enhancing the quality of the ethical climate in the ICU may improve both the identification of patients receiving excessive care and the decision-making process at the end of life
Outcome in patients perceived as receiving excessive care across different ethical climates : a prospective study in 68 intensive care units in Europe and the USA
Whether the quality of the ethical climate in the intensive care unit (ICU) improves the identification of patients receiving excessive care and affects patient outcomes is unknown.
In this prospective observational study, perceptions of excessive care (PECs) by clinicians working in 68 ICUs in Europe and the USA were collected daily during a 28-day period. The quality of the ethical climate in the ICUs was assessed via a validated questionnaire. We compared the combined endpoint (death, not at home or poor quality of life at 1 year) of patients with PECs and the time from PECs until written treatment-limitation decisions (TLDs) and death across the four climates defined via cluster analysis.
Of the 4747 eligible clinicians, 2992 (63%) evaluated the ethical climate in their ICU. Of the 321 and 623 patients not admitted for monitoring only in ICUs with a good (n = 12, 18%) and poor (n = 24, 35%) climate, 36 (11%) and 74 (12%), respectively were identified with PECs by at least two clinicians. Of the 35 and 71 identified patients with an available combined endpoint, 100% (95% CI 90.0-1.00) and 85.9% (75.4-92.0) (P = 0.02) attained that endpoint. The risk of death (HR 1.88, 95% CI 1.20-2.92) or receiving a written TLD (HR 2.32, CI 1.11-4.85) in patients with PECs by at least two clinicians was higher in ICUs with a good climate than in those with a poor one. The differences between ICUs with an average climate, with (n = 12, 18%) or without (n = 20, 29%) nursing involvement at the end of life, and ICUs with a poor climate were less obvious but still in favour of the former.
Enhancing the quality of the ethical climate in the ICU may improve both the identification of patients receiving excessive care and the decision-making process at the end of life
Initial Active Interrogation Experiments at The University of Michigan Linear Accelerator Laboratory
To support the mission of the Countering Weapons of Mass Destruction Office of the Department of Homeland Security, the Detection for Nuclear Nonproliferation group is researching active interrogation techniques and the development of new detection algorithms for fast neutron spectroscopy. The Countering Weapons of Mass Destruction Officehas loaned us a Varian M9 linear accelerator (linac), helium-3 detectors, boron-coated straw detectors, and perfluorocarbondetectors as part of this research, providing a variety of tools to conduct our experiments.In the summer of 2018, a thorough licensing process concluded, and preliminary experiments commenced. Later in the year, the facility was approved to possess and irradiate depleted uranium, which enabledus to conduct active interrogation experiments.In the fall of 2018, we conducted our first active interrogation measurements using the linac facility. The measurements used the linac to irradiate depleted uranium,lead, and tungsten targets to induce photonuclear reactions to emit fast neutrons. The neutrons were then detected using a simple helium-3 detector. Simulations were developed using MCNPX-PoliMi and MCNP 6.1 to validate the measured results. The simulations showed close agreement for depleted uranium but indicated that additional investigation is required for the lead and tungsten data. The facility will be indispensable as the researchprogressesbyproviding a mixed-radiation field consisting of fast neutrons and photons, which is similar to the radiation environment encountered in active interrogation scenarios.Additionally, the facility is involved inresearch related toradiation damage, dosimetry, and radiation-oncology.Future activities will involve characterization of photonuclear properties of various materials, and collaborations with other university researchers
Outcome in patients perceived as receiving excessive care across different ethical climates: a prospective study in 68 intensive care units in Europe and the USA
Purpose: Whether the quality of the ethical climate in the intensive care unit (ICU) improves the identification of patients receiving excessive care and affects patient outcomes is unknown. Methods: In this prospective observational study, perceptions of excessive care (PECs) by clinicians working in 68 ICUs in Europe and the USA were collected daily during a 28-day period. The quality of the ethical climate in the ICUs was assessed via a validated questionnaire. We compared the combined endpoint (death, not at home or poor quality of life at 1 year) of patients with PECs and the time from PECs until written treatment-limitation decisions (TLDs) and death across the four climates defined via cluster analysis. Results: Of the 4747 eligible clinicians, 2992 (63%) evaluated the ethical climate in their ICU. Of the 321 and 623 patients not admitted for monitoring only in ICUs with a good (n = 12, 18%) and poor (n = 24, 35%) climate, 36 (11%) and 74 (12%), respectively were identified with PECs by at least two clinicians. Of the 35 and 71 identified patients with an available combined endpoint, 100% (95% CI 90.0–1.00) and 85.9% (75.4–92.0) (P = 0.02) attained that endpoint. The risk of death (HR 1.88, 95% CI 1.20–2.92) or receiving a written TLD (HR 2.32, CI 1.11–4.85) in patients with PECs by at least two clinicians was higher in ICUs with a good climate than in those with a poor one. The differences between ICUs with an average climate, with (n = 12, 18%) or without (n = 20, 29%) nursing involvement at the end of life, and ICUs with a poor climate were less obvious but still in favour of the former. Conclusion: Enhancing the quality of the ethical climate in the ICU may improve both the identification of patients receiving excessive care and the decision-making process at the end of life
Expectation Maximization in Deep Probabilistic Logic Programming
Probabilistic Logic Programming (PLP) combines logic and probability for representing and reasoning over domains with uncertainty. Hierarchical probability Logic Programming (HPLP) is a recent language of PLP whose clauses are hierarchically organized forming a deep neural network or arithmetic circuit. Inference in HPLP is done by circuit evaluation and learning is therefore cheaper than any generic PLP language. We present in this paper an Expectation Maximization algorithm, called Expectation Maximization Parameter learning for HIerarchical Probabilistic Logic programs (EMPHIL), for learning HPLP parameters. The algorithm converts an arithmetic circuit into a Bayesian network and performs the belief propagation algorithm over the corresponding factor graph
- …
