68 research outputs found

    FUSION OF SENTINEL-2 AND PLANETSCOPE IMAGERY FOR VEGETATION DETECTION AND MONITORING

    Get PDF
    Different spatial resolutions satellite imagery with global almost daily revisit time provide valuable information about the earth surface in a short time. Based on the remote sensing methods satellite imagery can have different applications like environmental development, urban monitoring, etc. For accurate vegetation detection and monitoring, especially in urban areas, spectral characteristics, as well as the spatial resolution of satellite imagery is important. In this research, 10-m and 20-m Sentinel-2 and 3.7-m PlanetScope satellite imagery were used. Although in nowadays research Sentinel-2 satellite imagery is often used for land-cover classification or vegetation detection and monitoring, we decided to test a fusion of Sentinel-2 imagery with PlanetScope because of its higher spatial resolution. The main goal of this research is a new method for Sentinel-2 and PlanetScope imagery fusion. The fusion method validation was provided based on the land-cover classification accuracy. Three land-cover classifications were made based on the Sentinel-2, PlanetScope and fused imagery. As expected, results show better accuracy for PS and fused imagery than the Sentinel-2 imagery. PlanetScope and fused imagery have almost the same accuracy. For the vegetation monitoring testing, the Normalized Difference Vegetation Index (NDVI) from Sentinel-2 and fused imagery was calculated and mutually compared. In this research, all methods and tests, image fusion and satellite imagery classification were made in the free and open source programs. The method developed and presented in this paper can easily be applied to other sciences, such as urbanism, forestry, agronomy, ecology and geology

    Geokinematics of Central Europe: New insights from the CERGOP-2/Environment Project

    Get PDF
    The Central European Geodynamics Project CERGOP/2, funded by the European Union from 2003to 2006 under the 5th Framework Programme, benefited from repeated measurements of thecoordinates of epoch and permanent GPS stations of the Central European GPS Reference Network(CEGRN), starting in 1994. Here we report on the results of the systematic processing of availabledata up to 2005. The analysis has yielded velocities for some 60 sites, covering a variety of CentralEuropean tectonic provinces, from the Adria indenter to the Tauern window, the Dinarides, thePannonian Basin, the Vrancea seismic zone and the Carpathian Mountains. The estimated velocitiesdefine kinematical patterns which outline, with varying spatial resolution depending on the stationdensity and history, the present day surface kinematics in Central Europe. Horizontal velocities areanalyzed after removal from the ITRF2000 estimated velocities of a rigid rotation accounting forthe mean motion of Europe: a ~2.3 mm/yr north-south oriented convergence rate between Adria andthe Southern Alps that can be considered to be the present day velocity of the Adria indenterrelative to the European foreland. An eastward extrusion zone initiates at the Tauern Window. Thelateral eastward flow towards the Pannonian Basin exhibits a gentle gradient from 1-1.5 mm/yrimmediately east of the Tauern Window to zero in the Pannonian Basin. This kinematic continuityimplies that the Pannonian plate fragment recently suggested by seismic data does not require aspecific Eulerian pole. On the southeastern boundary of the Adria microplate, we report a velocitydrop from 4-4.5 mm/yr motion near Matera to ~1 mm/yr north of the Dinarides, in the southwesternpart of the Pannonian Basin. A positive velocity gradient as one moves south from West Ukraineacross Rumania and Bulgaria is estimated to be 2 mm/yr on a scale of 600-800 km, as if the crustwere dragged by the counterclockwise rotation along the North Anatolian Fault Zone. This regimeapparently does not interfere with the Vrancea seismic zone: earthquakes there are sufficiently deep(> 100 km) that the brittle deformation at depth can be considered as decoupled from the creep atthe surface. We conclude that models of the Quaternary tectonics of Central and Eastern Europeshould not neglect the long wavelength, nearly aseismic deformation affecting the upper crust in theRomanian and Bulgarian regions

    Spatio-temporal Evolution as Bigraph Dynamics

    Get PDF
    We present a novel approach to modelling the evolution of spatial entities over time by using bigraphs. We use the links in a bigraph to represent the sharing of a common ancestor and the places in a bigraph to represent spatial nesting as usual. We provide bigraphical reaction rules that are able to model situations such as two crowds of people merging together while still keeping track of the resulting crowd's historical links

    Novel Co-Treatment Strategies to Attenuate Acute Olanzapine-Induced Metabolic Dysfunction

    No full text
    Olanzapine is a second-generation antipsychotic (SGA) that is commonly prescribed for the treatment of schizophrenia and several on- and off-label conditions. While effective in reducing psychoses, acute olanzapine treatment causes rapid hyperglycemia, insulin resistance, and dyslipidemia and these perturbations are linked to an increased risk of developing cardiometabolic disease. The aim of this thesis was to investigate novel pharmacological approaches with GLP1 and/or amylin analogs to offset the acute negative metabolic side effects of olanzapine.In study 1, it was found that co-treatment with glucagon-like peptide-1 (GLP1) receptor agonists protect against olanzapine-induced hyperglycemia and lipidemia while these outcomes are worsened by GLP1 receptor antagonism. Study 2 investigated compounds which synergistically enhance endogenous GLP1 as a strategy to reduce the metabolic side effects of olanzapine. In this study it was found that raising endogenous GLP1 concentrations to pharmacological levels can attenuate olanzapine-induced perturbations in glucose and lipid metabolism under glucose stimulated conditions. Study 3 explored the efficacy of amylin analogs such as pramlintide, to combat the metabolic side effects of olanzapine and found that pramlintide tended to reduce olanzapine-induced hyperglycemia and enhanced the protective effects of low dose liraglutide, a GLP1 receptor agonist, against olanzapine-induced metabolic dysfunction. Together, the studies in this thesis highlight new benefits of common pharmacological treatments which leverage GLP1 and/or amylin signalling to exert protection against acute olanzapine-induced metabolic dysfunction and could be important in designing novel treatment strategies to alleviate side effects of antipsychotics.Canadian Institutes of Health ResearchNatural Sciences and Engineering Research Council of Canad

    ANALYSIS OF THE PIT REMOVAL METHODS IN DIGITAL TERRAIN MODELS OF VARIOUS RESOLUTIONS

    Full text link
    Digital terrain model (DTM) is the base for calculation of the surface runoff under the influence of the gravity (gravity flow) in hydrological analysis. It is important to produce hydrologically corrected DTM with the removed natural and artificial depressions to avoid numerical problems in algorithms of the gravity flow. The pit removal procedure changes geomorphometry of the DTM. GIS software packages use pit removal algorithm independently of geomorphmetric features of the analyzed area. In need of minimally modified DTM after the pit removal areas, the carving method (deepen drainage routes) and the filling method (fill sink) were analyzed on three different geomorphometric areas (bare mountain range, hilly wooded area and the plain area intersected with the network of the drainage canals). The recommendation is given for the choice of geomorphometric least changing DTM algorithm. The input data are raster data of elevation points created by stereoscopic photogrammetry method in 5x5 and 25x25 meter resolution. Differences have been noticed during the process of creating raster data. The recommendation is given for the choice of the most acceptable method for each type of area on the basis of comparison of the original elevation points with the elevation points in created DTM.</jats:p

    ANALYSIS OF THE PIT REMOVAL METHODS IN DIGITAL TERRAIN MODELS OF VARIOUS RESOLUTIONS

    No full text
    Digital terrain model (DTM) is the base for calculation of the surface runoff under the influence of the gravity (gravity flow) in hydrological analysis. It is important to produce hydrologically corrected DTM with the removed natural and artificial depressions to avoid numerical problems in algorithms of the gravity flow. The pit removal procedure changes geomorphometry of the DTM. GIS software packages use pit removal algorithm independently of geomorphmetric features of the analyzed area. In need of minimally modified DTM after the pit removal areas, the carving method (deepen drainage routes) and the filling method (fill sink) were analyzed on three different geomorphometric areas (bare mountain range, hilly wooded area and the plain area intersected with the network of the drainage canals). The recommendation is given for the choice of geomorphometric least changing DTM algorithm. The input data are raster data of elevation points created by stereoscopic photogrammetry method in 5x5 and 25x25 meter resolution. Differences have been noticed during the process of creating raster data. The recommendation is given for the choice of the most acceptable method for each type of area on the basis of comparison of the original elevation points with the elevation points in created DTM

    EVALUATION OF FEATURE SELECTION METHODS FOR VEGETATION MAPPING USING MULTITEMPORAL SENTINEL IMAGERY

    No full text
    Abstract. With the recent advances in remote sensing technologies for Earth observation (EO), many different remote sensors (e.g., optical, radar) collect data with distinctive properties. EO data have been employed to monitor croplands and forested areas, oceans and seas, urban settlements, and natural hazards. The spectral, spatial, and temporal resolutions of remote sensors have been continuously improving, making geospatial monitoring more accurate and comprehensive than ever before. To tackle this issue, various variable selection methods (e.g., filter, wrapper, and embedded methods) are nowadays used to reduce data complexity, and hence improve classification accuracy. Therefore, the goal of this research was twofold. Firstly, to assess the performance of the random forest (RF) classifier in a large heterogeneous landscape with diverse land-cover categories using multi-seasonal Sentinel imagery (i.e., Sentinel-1; S1 and Sentinel-2; S2) and ancillary data. Secondly, to compare RF variable selection methods to identify a subset of predictor variables that will be included in a final, simpler model. Using mean decrease accuracy (MDA) as a feature selection (FS) method, an original dataset was reduced from 114 to 34 input features, and its classification performance outperformed all-feature (114 features) and band-only (36 features) model with an OA of 90.91%. The most pertinent input features for vegetation mapping were S2 spectral bands (14 features), followed by the spectral indices derived from S2, texture features, and S1 bands. This research improved vegetation mapping by integrating radar and optical imagery, especially after applying FS methods which removed redundant and noisy features from the original dataset. Future research should address additional feature selection methods (i.e., filter, wrapper, or the embedded) for vegetation mapping, combined with advanced deep learning methods. </jats:p
    corecore