296 research outputs found

    Expanding the Applicability of Poly(Ionic Liquids) in Solid Phase Microextraction: Pyrrolidinium Coatings

    Get PDF
    Crosslinked pyrrolidinium-based poly(ionic liquids) (Pyrr-PILs) were synthesized through a fast, simple, and solventless photopolymerization scheme, and tested as solid phase microextraction (SPME) sorbents. A series of Pyrr-PILs bearing three different alkyl side chain lengths with two, eight, and fourteen carbons was prepared, characterized, and homogeneously coated on a steel wire by using a very simple procedure. The resulting coatings showed a high thermal stability, with decomposition temperatures above 350 degrees C, excellent film stability, and lifetime of over 100 injections. The performance of these PIL-based SPME fibers was evaluated using a mixture of eleven organic compounds with different molar volumes and chemical functionalities (alcohols, ketones, and monoterpenes). The Pyrr-PIL fibers were obtained as dense film coatings, with 67 mu m thickness, with an overall sorption increase of 90% and 55% as compared to commercial fibers of Polyacrylate (85 mu m) (PA85) and Polydimethylsiloxane (7 mu m) (PDMS7) coatings, respectively. A urine sample doped with the sample mixture was used to study the matrix effect and establish relative recoveries, which ranged from 60.2% to 104.1%.David J. S. Patinha, and Liliana C. Tome are grateful to FCT (Fundacao para a Ciencia e a Tecnologia) for the PhD research grant SFRH/BD/97042/2013 and the Post-Doctoral research grant (SFRH/BPD/101793/2014), respectively. David J. S. Patinha also thanks the financial support from COST-Exil Project 1206. The NMR data was acquired at CERMAX (Centro de Ressonncia Magnetica Antnio Xavier) which is a member of the National NMR network. This work was partially supported by FCT through Research Unit GREEN-it " Bioresources for Sustainability" (UID/Multi/04551/2013) and the Associate Laboratory CICECO Aveiro Institute of materials (UID/CTM/50011/2013)

    Emerging Ionic Polymers for CO2 Conversion to Cyclic Carbonates: An Overview of Recent Developments

    Get PDF
    In this mini review, we highlight some key work from the last 2 years where ionic polymers have been used as a catalyst to convert CO2 into cyclic carbonates. Emerging ionic polymers reported for this catalytic application include materials such as poly(ionic liquid)s (PILs), ionic porous organic polymers (iPOPs) or ionic covalent organic frameworks (iCOFs) among others. All these organic materials share in common the ionic moiety cations such as imidazolium, pyridinium, viologen, ammonium, phosphonium, and guanidinium, and anions such as halides, [BF4]-, [PF6]-, and [Tf2N]-. The mechanistic aspects and efficiency of the CO2 conversion reaction and the polymer design including functional groups and porosity are discussed in detail. This review should provide valuable information for researchers to design new polymers for important catalysis applications

    New electroactive macromonomers and multi-responsive PEDOT graft copolymers

    Get PDF
    Poly(3,4-ethylenedioxithiophene) (PEDOT) is the conducting polymer with the biggest prospects in the field of organic electronics due to its high electrical conductivity and transparency as thin films.Marie Curie IF BIKE Project No. 74286

    Design of ionic liquid like monomers towards easy-accessible single-ion conducting polymer electrolytes

    Get PDF
    The rational design of single-ion polymer electrolytes emerges as a primary strategy for enhancing the performance of lithium ion batteries. With the aim to increase ionic conductivity, four novel ionic liquid monomers were designed and synthesized in high purity. Such monomers differ from the previously reported systems by (1) the presence of a long and flexible spacer between the methacrylate group and chemically bonded anion or (2) by a long perfluorinated side chain. The investigation of their free radical copolymerization with poly(ethylene glycol) methyl ether methacrylate (PEGM) allowed to identify the impact of thei copolymer composition on thermal and ion conducting properties. The copolymer based on lithium 3-[4-(2-(methacryloyloxy)ethoxy)-4-oxobutanoyl)oxy) propylsulfonyl]-1-(trifluoromethylsulfonyl)imide showed the highest ionic conductivity (1.9 × 10−6 and 2 × 10−5 S cm−1 at 25 and 70 °C, respectively) at [EO]/[Li] = 61 ratio, along with a wide electrochemical stability (4.2 V vs. Li+/Li) and high lithium-ion transference number (0.91). The prepared copoly(ionic liquid)s (coPILs) were further applied for the assembly of Li/coPIL/LiFePO4 lithium-metal cells, which were capable to reversibly operate at 70 °C delivering relatively high specific capacity (up to 115 mAh g−1) at medium C/15 current rate

    Ionic Hydrogel for Accelerated Dopamine Delivery via Retrodialysis.

    Get PDF
    Local drug delivery directly to the source of a given pathology using retrodialysis is a promising approach to treating otherwise untreatable diseases. As the primary material component in retrodialysis, the semipermeable membrane represents a critical point for innovation. This work presents a new ionic hydrogel based on polyethylene glycol and acrylate with dopamine counterions. The ionic hydrogel membrane is shown to be a promising material for controlled diffusive delivery of dopamine. The ionic nature of the membrane accelerates uptake of cationic species compared to a nonionic membrane of otherwise similar composition. It is demonstrated that the increased uptake of cations can be exploited to confer an accelerated transport of cationic species between reservoirs as is desired in retrodialysis applications. This effect is shown to enable nearly 10-fold increases in drug delivery rates from low concentration solutions. The processability of the membrane is found to allow for integration with microfabricated devices which will in turn accelerate adaptation into both existing and emerging device modalities. It is anticipated that a similar materials design approach may be broadly applied to a variety of cationic and anionic compounds for drug delivery applications ranging from neurological disorders to cancer

    A light-mediated, 3D-printable, and self-healable polymer electrolyte for lithium batteries

    Get PDF
    Self-healing materials solutions and rapid prototyping approaches are actively searched to improve the safety and the production processes of batteries at the gigascale. Here, a self-reparable polymer electrolyte designed into 3D-printable ink formulation for digital light processing is shown. For this purpose, covalent adaptable networks containing hindered urea dynamic bonds end-capped with photopolymerizable methacrylate groups are designed and investigated in terms of dynamicity and self-healing properties. Electrochemical performance of the electrolytes is tested and compared with a commercially available benchmark, showing in all cases superior electrolyte uptake, ionic conductivities, and full specific capacity recovery after being cut in operando. This work brings the first self-healable and 3D-photoprinted electrolyte system for lithium batteries, at once ensuring safety, performance, and upscalability; the concept is also exploitable in lithium-mediated ammonia electrosynthesis

    3D Printable Conducting and Biocompatible PEDOT-graft-PLA Copolymers by Direct Ink Writing

    Get PDF
    Tailor-made polymers are needed to fully exploit the possibilities of additive manufacturing, constructing complex, and functional devices in areas such as bioelectronics. In this paper, the synthesis of a conducting and biocompatible graft copolymer which can be 3D printed using direct melting extrusion methods is shown. For this purpose, graft copolymers composed by conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and a biocompatible polymer polylactide (PLA) are designed. The PEDOT-g-PLA copolymers are synthesized by chemical oxidative polymerization between 3,4-ethylenedioxythiophene and PLA macromonomers. PEDOT-g-PLA copolymers with different compositions are obtained and fully characterized. The rheological characterization indicates that copolymers containing below 20 wt% of PEDOT show the right complex viscosity values suitable for direct ink writing (DIW). The 3D printing tests using the DIW methodology allows printing different parts with different shapes with high resolution (200\ua0\ub5m). The conductive and biocompatible printed patterns of PEDOT-g-PLA show excellent cell growth and maturation of neonatal cardiac myocytes cocultured with fibroblasts

    Bimodal modulation of in vitro angiogenesis with photoactive polymer nanoparticles

    Get PDF
    Angiogenesis is a fundamental process in biology, given the pivotal role played by blood vessels in providing oxygen and nutrients to tissues, thus ensuring cell survival. Moreover, it is critical in many life-threatening pathologies, like cancer and cardiovascular diseases. In this context, conventional treatments of pathological angiogenesis suffer from several limitations, including low bioavailability, limited spatial and temporal resolution, lack of specificity and possible side effects. Recently, innovative strategies have been explored to overcome these drawbacks based on the use of exogenous nano-sized materials and the treatment of the endothelial tissue with optical or electrical stimuli. Here, conjugated polymer-based nanoparticles are proposed as exogenous photo-actuators, thus combining the advantages offered by nanotechnology with those typical of optical stimulation. Light excitation can achieve high spatial and temporal resolution, while permitting minimal invasiveness. Interestingly, the possibility to either enhance (≈+30%) or reduce (up to −65%) the angiogenic capability of model endothelial cells is demonstrated, by employing different polymer beads, depending on the material type and the presence/absence of the light stimulus. In vitro results reported here represent a valuable proof of principle of the reliability and efficacy of the proposed approach and should be considered as a promising step towards a paradigm shift in therapeutic angiogenesis

    Semiconducting Polymer Nanoporous Thin Films as a Tool to Regulate Intracellular ROS Balance in Endothelial Cells

    Get PDF
    The design of soft and nanometer-scale photoelectrodes able to stimulate and promote the intracellular concentration of reactive oxygen species (ROS) is searched for redox medicine applications. In this work, we show semiconducting polymer porous thin films with an enhanced photoelectrochemical generation of ROS in human umbilical vein endothelial cells (HUVECs). To achieve that aim, we synthesized graft copolymers, made of poly(3-hexylthiophene) (P3HT) and degradable poly(lactic acid) (PLA) segments, P3HT-g-PLA. In a second step, the hydrolysis of sacrificial PLA leads to nanometer-scale porous P3HT thin films. The pore sizes in the nm regime (220-1200 nm) were controlled by the copolymer composition and the structural arrangement of the copolymers during the film formation, as determined by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The porous P3HT thin films showed enhanced photofaradaic behavior, generating a higher concentration of ROS in comparison to non-porous P3HT films, as determined by scanning electrochemical microscopy (SECM) measurements. The exogenous ROS production was able to modulate the intracellular ROS concentration in HUVECs at non-toxic levels, thus affecting the physiological functions of cells. Results presented in this work provide an important step forward in the development of new tools for precise, on-demand, and non-invasive modulation of intracellular ROS species and may be potentially extended to many other physiological or pathological cell models
    corecore