62 research outputs found
Size-consistent self-consistent configuration interaction from a complete active space : Excited states
The self-consistent size consistent on a complete active space singly and doubly configuration interaction (SC)2CAS-SDCI method is applied to excited states. The (SC)2 correction is performed on a closed shell state, and the excited states are obtained by diagonalization of the dressed matrix. A theoretical justification of the transferability of the improvement concerning the dressing state to all roots of the matrix is presented. The method is tested by three tests on the spectrum of small [email protected] ; [email protected]
Self‐consistent intermediate Hamiltonians : A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing
This paper presents a new self‐consistent dressing of a singles and doubles configuration interaction matrix which insures size‐consistency, separability into closed‐shell subsystems if localized molecular orbitals (MOs) are used, and which includes all fourth order corrections. This method yields, among several schemes, a reformulation of the coupled cluster method, including fully the cluster operators of single and double excitations, and partially those of the triples (Bartlett’s algorithm named CCSDT‐1a). Further improvement can be easily included by adding exclusion principle violating corrections. Since it leads to a matrix diagonalization, the method behaves correctly in case of near degeneracies between the reference determinant and some doubles. Due to its flexibility this formulation offers the possibility of consistent combination with less expensive treatments for the study of very large [email protected] ; [email protected]
Local character of magnetic coupling in ionic solids
Magnetic interactions in ionic solids are studied using parameter-free methods designed to provide accurate energy differences associated with quantum states defining the Heisenberg constant J. For a series of ionic solids including KNiF3, K2NiF4, KCuF3, K2CuF4, and high- Tc parent compound La2CuO4, the J experimental value is quantitatively reproduced. This result has fundamental implications because J values have been calculated from a finite cluster model whereas experiments refer to infinite solids. The present study permits us to firmly establish that in these wide-gap insulators, J is determined from strongly local electronic interactions involving two magnetic centers only thus providing an ab initio support to commonly used model Hamiltonians
Variational Hilbert space truncation approach to quantum Heisenberg antiferromagnets on frustrated clusters
We study the spin- Heisenberg antiferromagnet on a series of
finite-size clusters with features inspired by the fullerenes. Frustration due
to the presence of pentagonal rings makes such structures challenging in the
context of quantum Monte-Carlo methods. We use an exact diagonalization
approach combined with a truncation method in which only the most important
basis states of the Hilbert space are retained. We describe an efficient
variational method for finding an optimal truncation of a given size which
minimizes the error in the ground state energy. Ground state energies and
spin-spin correlations are obtained for clusters with up to thirty-two sites
without the need to restrict the symmetry of the structures. The results are
compared to full-space calculations and to unfrustrated structures based on the
honeycomb lattice.Comment: 22 pages and 12 Postscript figure
Direct generation of local orbitals for multireference treatment and subsequent uses for the calculation of the correlation energy
We present a method that uses the one-particle density matrix to generate directly localized orbitals
dedicated to multireference wave functions. On one hand, it is shown that the definition of local
orbitals making possible physically justified truncations of the CAS ~complete active space! is
particularly adequate for the treatment of multireference problems. On the other hand, as it will be
shown in the case of bond breaking, the control of the spatial location of the active orbitals may
permit description of the desired physics with a smaller number of active orbitals than when starting
from canonical molecular orbitals. The subsequent calculation of the dynamical correlation energy
can be achieved with a lower computational effort either due to this reduction of the active space,
or by truncation of the CAS to a shorter set of references. The ground- and excited-state energies are
very close to the current complete active space self-consistent field ones and several examples of
multireference singles and doubles calculations illustrate the interest of the procedur
Proposal of an extended t-J Hamiltonian for high-Tc cuprates from ab initio calculations on embedded clusters
A series of accurate ab initio calculations on Cu_pO-q finite clusters,
properly embedded on the Madelung potential of the infinite lattice, have been
performed in order to determine the local effective interactions in the CuO_2
planes of La_{2-x}Sr_xCuO_4 compounds. The values of the first-neighbor
interactions, magnetic coupling (J_{NN}=125 meV) and hopping integral
(t_{NN}=-555 meV), have been confirmed. Important additional effects are
evidenced, concerning essentially the second-neighbor hopping integral
t_{NNN}=+110meV, the displacement of a singlet toward an adjacent colinear
hole, h_{SD}^{abc}=-80 meV, a non-negligible hole-hole repulsion
V_{NN}-V_{NNN}=0.8 eV and a strong anisotropic effect of the presence of an
adjacent hole on the values of the first-neighbor interactions. The dependence
of J_{NN} and t_{NN} on the position of neighbor hole(s) has been rationalized
from the two-band model and checked from a series of additional ab initio
calculations. An extended t-J model Hamiltonian has been proposed on the basis
of these results. It is argued that the here-proposed three-body effects may
play a role in the charge/spin separation observed in these compounds, that is,
in the formation and dynamic of stripes.Comment: 24 pages, 4 figures, submitted to Phys. Rev.
Contracted and supercontracted basis sets in the theoretical treatment of coordination compounds: the cyclopentadienyl anion and ferrocene
In this paper we apply a technique, recently proposed for organic substituents, to the cyclopentadienyl anion. The technique allows us to reduce the size of the basis set without seriously affecting the quality of the ab initio calculations. This is illustrated by the determination of the Fe-ring distance in ferrocene, which is known to require a high level ab initio treatment including electron correlation
- …