131 research outputs found
Study of the Fusion-Fission Process in the Reaction
Fusion-fission and fully energy-damped binary processes of the
Cl+Mg reaction were investigated using particle-particle
coincidence techniques at a Cl bombarding energy of E
8 MeV/nucleon. Inclusive data were also taken in order to determine the partial
wave distribution of the fusion process. The fragment-fragment correlation data
show that the majority of events arises from a binary-decay process with a
relatively large multiplicity of secondary light-charged particles emitted by
the two primary excited fragments in the exit channel. No evidence is observed
for ternary-breakup processes, as expected from the systematics recently
established for incident energies below 15 MeV/nucleon and for a large number
of reactions. The binary-process results are compared with predictions of
statistical-model calculations. The calculations were performed using the
Extended Hauser-Feshbach method, based on the available phase space at the
scission point of the compound nucleus. This new method uses
temperature-dependent level densities and its predictions are in good agreement
with the presented experimental data, thus consistent with the fusion-fission
origin of the binary fully-damped yields.Comment: 30 pages standard REVTeX file, 10 eps Figures; to be published at the
European Physical Journal A - Hadrons and Nucle
Relation between the phenomenological interactions of the algebraic cluster model and the effective two--nucleon forces
We determine the phenomenological cluster--cluster interactions of the
algebraic model corresponding to the most often used effective two--nucleon
forces for the O + system.Comment: Latex with Revtex, 1 figure available on reques
Extended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems
An Extended Hauser-Feshbach Method (EHFM) is developed for light heavy-ion
fusion reactions in order to provide a detailed analysis of all the possible
decay channels by including explicitly the fusion-fission phase-space in the
description of the cascade chain. The mass-asymmetric fission component is
considered as a complex-fragment binary-decay which can be treated in the same
way as the light-particle evaporation from the compound nucleus in
statistical-model calculations. The method of the phase-space integrations for
the binary-decay is an extension of the usual Hauser-Feshbach formalism to be
applied to the mass-symmetric fission part. The EHFM calculations include
ground-state binding energies and discrete levels in the low excitation-energy
regions which are essential for an accurate evaluation of the phase-space
integrations of the complex-fragment emission (fission). In the present
calculations, EHFM is applied to the first-chance binary-decay by assuming that
the second-chance fission decay is negligible. In a similar manner to the
description of the fusion-evaporation process, the usual cascade calculation of
light-particle emission from the highly excited complex fragments is applied.
This complete calculation is then defined as EHFM+CASCADE. Calculated
quantities such as charge-, mass- and kinetic-energy distributions are compared
with inclusive and/or exclusive data for the S+Mg and
Cl+C reactions which have been selected as typical examples.
Finally, the missing charge distributions extracted from exclusive measurements
are also successfully compared with the EHFM+CASCADE predictions.Comment: 34 pages, 6 Figures available upon request, Phys. Rev. C (to be
published
Dissipative collisions in O + Al at E=116 MeV
The inclusive energy distributions of fragments (3Z7) emitted in
the reaction O + Al at 116 MeV have been measured in
the angular range = 15 - 115. A non-linear
optimisation procedure using multiple Gaussian distribution functions has been
proposed to extract the fusion-fission and deep inelastic components of the
fragment emission from the experimental data. The angular distributions of the
fragments, thus obtained, from the deep inelastic component are found to fall
off faster than those from the fusion-fission component, indicating shorter
life times of the emitting di-nuclear systems. The life times of the
intermediate di-nuclear configurations have been estimated using a diffractive
Regge-pole model. The life times thus extracted (
Sec.) are found to decrease with the increase in the fragment charge. Optimum
Q-values are also found to increase with increasing charge transfer i.e. with
the decrease in fragment charge.Comment: 9 pages, 4 figures, 1 tabl
On the role of different Skyrme forces and surface corrections in exotic cluster-decay
We present cluster decay studies of Ni formed in heavy-ion
collisions using different Skyrme forces. Our study reveals that different
Skyrme forces do not alter the transfer structure of fractional yields
significantly. The cluster decay half-lives of different clusters lies within
\pm 10% for PCM and \pm 15% for UFM.Comment: 13 pages,6 figures and 1 table; in press Pramana Journal of Physics
(2010
Highly deformed Ca configurations in Si + C
The possible occurrence of highly deformed configurations in the Ca
di-nuclear system formed in the Si + C reaction is investigated
by analyzing the spectra of emitted light charged particles. Both inclusive and
exclusive measurements of the heavy fragments (A 10) and their
associated light charged particles (protons and particles) have been
made at the IReS Strasbourg {\sc VIVITRON} Tandem facility at bombarding
energies of Si) = 112 MeV and 180 MeV by using the {\sc ICARE}
charged particle multidetector array. The energy spectra, velocity
distributions, and both in-plane and out-of-plane angular correlations of light
charged particles are compared to statistical-model calculations using a
consistent set of parameters with spin-dependent level densities. The analysis
suggests the onset of large nuclear deformation in Ca at high spin.Comment: 33 pages, 11 figure
Emission of intermediate mass fragments from hot Ba formed in low-energy Ni+Ni reaction
The complex fragments (or intermediate mass fragments) observed in the
low-energy Ni+NiBa reaction, are studied within
the dynamical cluster decay model for s-wave with the use of the
temperature-dependent liquid drop, Coulomb and proximity energies. The
important result is that, due to the temperature effects in liquid drop energy,
the explicit preference for -like fragments is washed out, though the
C (or the complementary Sn) decay is still predicted to be one
of the most probable -nucleus decay for this reaction. The production
rates for non- like intermediate mass fragments (IMFs) are now higher
and the light particle production is shown to accompany the IMFs at all
incident energies, without involving any statistical evaporation process in the
model. The comparisons between the experimental data and the (s-wave)
calculations for IMFs production cross sections are rather satisfactory and the
contributions from other -waves need to be added for a further
improvement of these comparisons and for calculations of the total kinetic
energies of fragments.Comment: 22 pages, 15 figure
Fission and cluster decay of Sr nucleus in the ground-state and formed in heavy-ion reactions
Calculations for fission and cluster decay of are presented for
this nucleus to be in its ground-state or formed as an excited compound system
in heavy-ion reactions. The predicted mass distribution, for the dynamical
collective mass transfer process assumed for fission of , is clearly
asymmetric, favouring -nuclei. Cluster decay is studied within a
preformed cluster model, both for ground-state to ground-state decays and from
excited compound system to the ground-state(s) or excited states(s) of the
fragments.Comment: 14 pages LaTeX, 5 Figures available upon request Submitted to Phys.
Rev.
Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome
A homozygous mutational change in the Ataxia-Telangiectasia and RAD3 related (ATR) gene was previously reported in two related families displaying Seckel Syndrome (SS). Here, we provide the first identification of a Seckel Syndrome patient with mutations in ATRIP, the gene encoding ATR-Interacting Protein (ATRIP), the partner protein of ATR required for ATR stability and recruitment to the site of DNA damage. The patient has compound heterozygous mutations in ATRIP resulting in reduced ATRIP and ATR expression. A nonsense mutational change in one ATRIP allele results in a C-terminal truncated protein, which impairs ATR-ATRIP interaction; the other allele is abnormally spliced. We additionally describe two further unrelated patients native to the UK with the same novel, heterozygous mutations in ATR, which cause dramatically reduced ATR expression. All patient-derived cells showed defective DNA damage responses that can be attributed to impaired ATR-ATRIP function. Seckel Syndrome is characterised by microcephaly and growth delay, features also displayed by several related disorders including Majewski (microcephalic) osteodysplastic primordial dwarfism (MOPD) type II and Meier-Gorlin Syndrome (MGS). The identification of an ATRIP-deficient patient provides a novel genetic defect for Seckel Syndrome. Coupled with the identification of further ATR-deficient patients, our findings allow a spectrum of clinical features that can be ascribed to the ATR-ATRIP deficient sub-class of Seckel Syndrome. ATR-ATRIP patients are characterised by extremely severe microcephaly and growth delay, microtia (small ears), micrognathia (small and receding chin), and dental crowding. While aberrant bone development was mild in the original ATR-SS patient, some of the patients described here display skeletal abnormalities including, in one patient, small patellae, a feature characteristically observed in Meier-Gorlin Syndrome. Collectively, our analysis exposes an overlapping clinical manifestation between the disorders but allows an expanded spectrum of clinical features for ATR-ATRIP Seckel Syndrome to be define
Statistical Binary Decay of Cl + Mg at 8 MeV/nucleon
The properties of the two-body channels in the Cl + Mg reaction
at a bombarding energy of 275 MeV have been investigated by using
fragment-fragment coincident techniques. The exclusive data show that the
majority of events arises from a binary-decay process. The rather large number
of secondary light charged-particles emitted from the two excited exit
fragments are cnsistent with the expectations of the Extended Hauser-Feshbach
Method. No evidence for the occurence of ternary break-up events is observed.Comment: 8 pages, 3 Figures available upon request To be published at Z. Phys.
- …