94 research outputs found

    Development of Database of Cyclic Soil Properties from 94 Tests on 47 Soils

    Get PDF
    Cyclic properties of 47 soils were tested in several investigations between 1994 and 2004 in the standard Norwegian Geotechnical Institute (NGI) direct simple shear (DSS) device and an NGI-type dual-specimen DSS (DSDSS) device for small strain testing. In each investigation many cycles of different amplitude, c, and frequency, f, were applied at different levels of vertical stress, v, and overconsolidation ratio, OCR. In DSDSS device many consecutive series of different small c=0.0003-0.01% were applied on the same specimens without changing their structure, because at such small c cyclic shearing is nondestructive. Consequently, the vast amounts of small-strain data were generated. This necessitated the development of new approach to data processing and analysis. New procedure for reading, checking, organizing, combining, comparing and analyzing the vast arrays of cyclic test data has been developed and structured into a database that has the cyclic loop as its elementary unit. Each cyclic loop in the database is characterized by the soils’ plasticity index, moisture content, void ratio, degree of saturation, v, OCR, c, f, secant shear modulus, damping ratio, and the shape of cyclic straining. Using the database very large number of cyclic loops can be compared to instantly obtain graphical presentation of different behavioral trends. The structure of the database and its application is summarized

    Updated Planetary Mass Constraints of the Young V1298 Tau System Using MAROON-X

    Get PDF
    The early K-type T-Tauri star, V1298 Tau (V=10magV=10\,{\rm mag}, age2030Myr{\rm age}\approx20-30\,{\rm Myr}) hosts four transiting planets with radii ranging from 4.99.6R4.9-9.6\,R_\oplus. The three inner planets have orbital periods of 824d\approx8-24\,{\rm d} while the outer planet's period is poorly constrained by single transits observed with \emph{K2} and \emph{TESS}. Planets b, c, and d are proto-sub-Neptunes that may be undergoing significant mass loss. Depending on the stellar activity and planet masses, they are expected to evolve into super-Earths/sub-Neptunes that bound the radius valley. Here we present results of a joint transit and radial velocity (RV) modelling analysis, which includes recently obtained \emph{TESS} photometry and MAROON-X RV measurements. Assuming circular orbits, we obtain a low-significance (2σ\approx2\sigma) RV detection of planet c implying a mass of 19.88.9+9.3M19.8_{-8.9}^{+9.3}\,M_\oplus and a conservative 2σ2\sigma upper limit of <39M<39\,M_\oplus. For planets b and d, we derive 2σ2\sigma upper limits of Mb<159MM_{\rm b}<159\,M_\oplus and Md<41MM_{\rm d}<41\,M_\oplus. For planet e, plausible discrete periods of Pe>55.4dP_{\rm e}>55.4\,{\rm d} are ruled out at a 3σ3\sigma level while seven solutions with 43.3<Pe/d<55.443.3<P_{\rm e}/{\rm d}<55.4 are consistent with the most probable 46.768131±000076d46.768131\pm000076\,{\rm d} solution within 3σ3\sigma. Adopting the most probable solution yields a 2.6σ2.6\sigma RV detection with mass a of 0.66±0.26MJup0.66\pm0.26\,M_{\rm Jup}. Comparing the updated mass and radius constraints with planetary evolution and interior structure models shows that planets b, d, and e are consistent with predictions for young gas-rich planets and that planet c is consistent with having a water-rich core with a substantial (5%\sim5\% by mass) H2_2 envelope.Comment: 18 pages, 13 figures, accepted for publication in A

    AIP4/Itch Regulates Notch Receptor Degradation in the Absence of Ligand

    Get PDF
    International audienceBACKGROUND:The regulation of Notch signaling heavily relies on ubiquitination events. Drosophila Su(dx), a member of the HECT family of ubiquitin-ligases, has been described as a negative regulator of Notch signaling, acting on the post-endocytic sorting of Notch. The mammalian ortholog of Su(dx), Itch/AIP4, has been shown to have multiple substrates, including Notch, but the precise events regulated by Itch/AIP4 in the Notch pathway have not been identified yet.METHODOLOGY/PRINCIPAL FINDINGS:Using Itch-/- fibroblasts expressing the Notch1 receptor, we show that Itch is not necessary for Notch activation, but rather for controlling the degradation of Notch in the absence of ligand. Itch is indeed required after the early steps of Notch endocytosis to target it to the lysosomes where it is degraded. Furthermore Itch/AIP4 catalyzes Notch polyubiquitination through unusual K29-linked chains. We also demonstrate that although Notch is associated with Itch/AIP4 in cells, their interaction is not detectable in vitro and thus requires either a post-translational modification, or a bridging factor that remains to be identified.CONCLUSIONS/SIGNIFICANCE:Taken together our results identify a specific step of Notch regulation in the absence of any activation and underline differences between mammalian and Drosophila Notch pathways

    Fine-scale detection of population-specific linkage disequilibrium using haplotype entropy in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The creation of a coherent genomic map of recent selection is one of the greatest challenges towards a better understanding of human evolution and the identification of functional genetic variants. Several methods have been proposed to detect linkage disequilibrium (LD), which is indicative of natural selection, from genome-wide profiles of common genetic variations but are designed for large regions.</p> <p>Results</p> <p>To find population-specific LD within small regions, we have devised an entropy-based method that utilizes differences in haplotype frequency between populations. The method has the advantages of incorporating multilocus association, conciliation with low allele frequencies, and independence from allele polarity, which are ideal for short haplotype analysis. The comparison of HapMap SNPs data from African and Caucasian populations with a median resolution size of ~23 kb gave us novel candidates as well as known selection targets. Enrichment analysis for the yielded genes showed associations with diverse diseases such as cardiovascular, immunological, neurological, and skeletal and muscular diseases. A possible scenario for a selective force is discussed. In addition, we have developed a web interface (ENIGMA, available at <url>http://gibk21.bse.kyutech.ac.jp/ENIGMA/index.html</url>), which allows researchers to query their regions of interest for population-specific LD.</p> <p>Conclusion</p> <p>The haplotype entropy method is powerful for detecting population-specific LD embedded in short regions and should contribute to further studies aiming to decipher the evolutionary histories of modern humans.</p

    Pathway aberrations of murine melanoma cells observed in Paired-End diTag transcriptomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma is the major cause of skin cancer deaths and melanoma incidence doubles every 10 to 20 years. However, little is known about melanoma pathway aberrations. Here we applied the robust Gene Identification Signature Paired End diTag (GIS-PET) approach to investigate the melanoma transcriptome and characterize the global pathway aberrations.</p> <p>Methods</p> <p>GIS-PET technology directly links 5' mRNA signatures with their corresponding 3' signatures to generate, and then concatenate, PETs for efficient sequencing. We annotated PETs to pathways of KEGG database and compared the murine B16F1 melanoma transcriptome with three non-melanoma murine transcriptomes (Melan-a2 melanocytes, E14 embryonic stem cells, and E17.5 embryo). Gene expression levels as represented by PET counts were compared across melanoma and melanocyte libraries to identify the most significantly altered pathways and investigate the expression levels of crucial cancer genes.</p> <p>Results</p> <p>Melanin biosynthesis genes were solely expressed in the cells of melanocytic origin, indicating the feasibility of using the PET approach for transcriptome comparison. The most significantly altered pathways were metabolic pathways, including upregulated pathways: purine metabolism, aminophosphonate metabolism, tyrosine metabolism, selenoamino acid metabolism, galactose utilization, nitrobenzene degradation, and bisphenol A degradation; and downregulated pathways: oxidative phosphorylation, ATPase synthesis, TCA cycle, pyruvate metabolism, and glutathione metabolism. The downregulated pathways concurrently indicated a slowdown of mitochondrial activities. Mitochondrial permeability was also significantly altered, as indicated by transcriptional activation of ATP/ADP, citrate/malate, Mg<sup>++</sup>, fatty acid and amino acid transporters, and transcriptional repression of zinc and metal ion transporters. Upregulation of cell cycle progression, MAPK, and PI3K/Akt pathways were more limited to certain region(s) of the pathway. Expression levels of c-<it>Myc </it>and <it>Trp53 </it>were also higher in melanoma. Moreover, transcriptional variants resulted from alternative transcription start sites or alternative polyadenylation sites were found in <it>Ras </it>and genes encoding adhesion or cytoskeleton proteins such as integrin, β-catenin, α-catenin, and actin.</p> <p>Conclusion</p> <p>The highly correlated results unmistakably point to a systematic downregulation of mitochondrial activities, which we hypothesize aims to downgrade the mitochondria-mediated apoptosis and the dependency of cancer cells on angiogenesis. Our results also demonstrate the advantage of using the PET approach in conjunction with KEGG database for systematic pathway analysis.</p

    Detailed Kinetics of the Direct Allo-Response in Human Liver Transplant Recipients: New Insights from an Optimized Assay

    Get PDF
    Conventional assays for quantification of allo-reactive T-cell precursor frequencies (PF) are relatively insensitive. We present a robust assay for quantification of PF of T-cells with direct donor-specificity, and establish the kinetics of circulating donor-specific T cells after liver transplantation (LTx). B cells from donor splenocytes were differentiated into professional antigen-presenting cells by CD40-engagement (CD40-B cells). CFSE-labelled PBMC from LTx-recipients obtained before and at several time points after LTx, were stimulated with donor-derived or 3rd party CD40-B cells. PF of donor-specific T cells were calculated from CFSE-dilution patterns, and intracellular IFN-γ was determined after re-stimulation with CD40-B cells. Compared to splenocytes, stimulations with CD40-B cells resulted in 3 to 5-fold higher responding T-cell PF. Memory and naïve T-cell subsets responded equally to allogeneic CD40-B cell stimulation. Donor-specific CD4+ and CD8+ T-cell PF ranged from 0.5 to 19% (median: 5.2%). One week after LTx, PF of circulating donor-specific CD4+ and CD8+ T cells increased significantly, while only a minor increase in numbers of T cells reacting to 3rd party allo-antigens was observed. One year after LTx numbers of CD4+ and CD8+ T cells reacting to donor antigens, as well as those reacting to 3rd party allo-antigens, were slightly lower compared to pre-transplant values. Moreover, CD4+ and CD8+ T cells responding to donor-derived, as well as those reacting to 3rd party CD40-B cells, produced less IFN-γ. In conclusion, our alternative approach enables detection of allo-reactive human T cells at high frequencies, and after application we conclude that donor-specific T-cell PF increase immediately after LTx. However, no evidence for a specific loss of circulating T-cells recognizing donor allo-antigens via the direct pathway up to 1 year after LTx was obtained, underscoring the relative insensitiveness of previous assays

    Mutation in Archain 1, a Subunit of COPI Coatomer Complex, Causes Diluted Coat Color and Purkinje Cell Degeneration

    Get PDF
    Intracellular trafficking is critical for delivering molecules and organelles to their proper destinations to carry out normal cellular functions. Disruption of intracellular trafficking has been implicated in the pathogenesis of various neurodegenerative disorders. In addition, a number of genes involved in vesicle/organelle trafficking are also essential for pigmentation, and loss of those genes is often associated with mouse coat-color dilution and human hypopigmentary disorders. Hence, we postulated that screening for mouse mutants with both neurological defects and coat-color dilution will help identify additional factors associated with intracellular trafficking in neuronal cells. In this study, we characterized a mouse mutant with a unique N-ethyl-N-nitrosourea (ENU)–induced mutation, named nur17. nur17 mutant mice exhibit both coat-color dilution and ataxia due to Purkinje cell degeneration in the cerebellum. By positional cloning, we identified that the nur17 mouse carries a T-to-C missense mutation in archain 1 (Arcn1) gene which encodes the δ subunit of the coat protein I (COPI) complex required for intracellular trafficking. Consistent with this function, we found that intracellular trafficking is disrupted in nur17 melanocytes. Moreover, the nur17 mutation leads to common characteristics of neurodegenerative disorders such as abnormal protein accumulation, ER stress, and neurofibrillary tangles. Our study documents for the first time the physiological consequences of the impairment of the ARCN1 function in the whole animal and demonstrates a direct association between ARCN1 and neurodegeneration

    Fragile X Related Protein 1 Clusters with Ribosomes and Messenger RNAs at a Subset of Dendritic Spines in the Mouse Hippocampus

    Get PDF
    The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system
    corecore