431 research outputs found
Bubble Nucleation of Spatial Vector Fields
We study domain-walls and bubble nucleation in a non-relativistic vector
field theory with different longitudinal and transverse speeds of sound. We
describe analytical and numerical methods to calculate the orientation
dependent domain-wall tension, . We then use this tension to
calculate the critical bubble shape. The longitudinally oriented domain-wall
tends to be the heaviest, and sometime suffers an instability. It can
spontaneously break into zigzag segments. In this case, the critical bubble
develops kinks, and its energy, and therefore the tunneling rate, scales with
the sound speeds very differently than what would be expected for a smooth
bubble.Comment: version 4, correction in the citation
A morphometric analysis of the infant calvarium and dura
Literature addressing the anatomic development of the dura and calvarium during childhood is limited. Nevertheless, histological features of a subdural neomembrane (NM), including its thickness and vascularity, developing in response to an acute subdural hematoma (SDH) have been compared to the dura of adults to estimate when an injury occurred. Therefore, we measured the morphometric growth of the calvarium and dura and the vascular density within the dura during infancy. The mean thicknesses of the calvarium and dura as a function of occipitofrontal circumference (OFC), as well as the mean number of vessels per 25× field, were determined from the right parasagittal midparietal bone lateral to the sagittal suture of 128 infants without a history of head trauma. Our results showed that as OFC increased, the mean thicknesses of the calvarium and dura increased while the vascular density within the dura decreased. Our morphometric data may assist in the interpretation of subdural NM occurring during infancy. We recommend future investigations to confirm and extend our present data, especially by evaluating cases during later infancy and beyond as well as by sampling other anatomic sites from the calvarium. We also recommend morphometric evaluation of subdural NM associated with SDH in infancy and childhood
Can Clustal-style progressive pairwise alignment of multiple sequences be used in RNA secondary structure prediction?
<p>Abstract</p> <p>Background</p> <p>In ribonucleic acid (RNA) molecules whose function depends on their final, folded three-dimensional shape (such as those in ribosomes or spliceosome complexes), the secondary structure, defined by the set of internal basepair interactions, is more consistently conserved than the primary structure, defined by the sequence of nucleotides.</p> <p>Results</p> <p>The research presented here investigates the possibility of applying a progressive, pairwise approach to the alignment of multiple RNA sequences by simultaneously predicting an energy-optimized consensus secondary structure. We take an existing algorithm for finding the secondary structure common to two RNA sequences, Dynalign, and alter it to align profiles of multiple sequences. We then explore the relative successes of different approaches to designing the tree that will guide progressive alignments of sequence profiles to create a multiple alignment and prediction of conserved structure.</p> <p>Conclusion</p> <p>We have found that applying a progressive, pairwise approach to the alignment of multiple ribonucleic acid sequences produces highly reliable predictions of conserved basepairs, and we have shown how these predictions can be used as constraints to improve the results of a single-sequence structure prediction algorithm. However, we have also discovered that the amount of detail included in a consensus structure prediction is highly dependent on the order in which sequences are added to the alignment (the guide tree), and that if a consensus structure does not have sufficient detail, it is less likely to provide useful constraints for the single-sequence method.</p
Effects on the CMB from Compactification Before Inflation
Many theories beyond the Standard Model include extra dimensions, though these have yet to be directly observed. In this work we consider the possibility of a compactification mechanism which both allows extra dimensions and is compatible with current observations. This compactification is predicted to leave a signature on the CMB by altering the amplitude of the low l multipoles, dependent on the amount of inflation. Recently discovered CMB anomalies at low multipoles may be evidence for this. In our model we assume the spacetime is the product of a four-dimensional spacetime and flat extra dimensions. Before the compactification, both the four-dimensional space- time and the extra dimensions can either be expanding or contracting independently. Taking into account physical constraints, we explore the observational consequences and the plausibility of these different models
Knowledge, attitude and practice of nuclear medicine staff towards radiation protection
Introduction: Ionizing radiation in medical imaging is one of the dominant sources of exposure, and correct knowledge of radiation protection, affects staff safety behaviors during procedures. This study aimed to assess the radiation protection Knowledge, Attitude and Practice (KAP) amongst nuclear medicine centers' staff in Iran. Methods: To evaluate the level of radiation protection KAP, a validated questionnaire was distributed between 243 participants considering demographic characteristics in different geographical regions in Iran from 2014 to 2015. Results: There were statistically significant differences in the level of nuclear medicine staff KAP radiation protection with gender (p0.05). Conclusion: Our findings have shown that radiation protection KAP level of nuclear medicine staff was inadequate in some regions. This might be due to the lack of continuous training and absence of adequate safety knowledge about ionizing radiation. It seems that awareness about radiation protection rules and regulations, along with continuous training and preparations has a direct effect on radiation practice leading to enhanced KAP of staff in nuclear medicine centers. © 2019 Tehran University of Medical Sciences. All rights reserved
Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids
An investigation on viscosity was conducted 2 weeks after the Al2O3-water nanofluids having dispersants were prepared at the volume concentration of 1-5%. The shear stress was observed with a non-Newtonian behavior. On further ultrasonic agitation treatment, the nanofluids resumed as a Newtonian fluids. The relative viscosity increases as the volume concentrations increases. At 5% volume concentration, an increment was about 60% in the re-ultrasonication nanofluids in comparison with the base fluid. The microstructure analysis indicates that a higher nanoparticle aggregation had been observed in the nanofluids before re-ultrasonication
Radiation protection knowledge, attitude, and practice (KAP) in interventional radiology
Objectives: Due to increasing cardiac disease and its mortality rate, the frequency of cardiac imaging has grown and, as a result, interventional cardiologists potentially receive high radiation doses in cardiac examinations. This study aimed to assess the knowledge, attitude, and practice (KAP) level of radiation protection (RP) among interventional radiology staff in Iranian health care centers across the country. Methods: We used a validated questionnaire survey consisting of 30 multiple-choice questions to perform a cross-sectional study. Participants were healthcare personnel working professionally with radiation at different levels (i.e., secretary, radiology technologists, nurse, and physician). The questionnaire was divided into three sections to assess KAP regarding RP. Results: Significant differences exist in RP KAP mean scores based on educational age (p 0.050). We found a significant difference between RP KAP mean scores and different regions (p < 0.050). Conclusions: Educational and practice age, sex, type of hospital, and geographical region affect he KAP of interventional radiology staff regarding RP. Since many of the subjective radiation harms for both medical team and patients, this can be easily controlled and prevented; a checkup for personnel of interventional radiology departments, considering samples from different parts of the country with different levels of education, continuous training, and practical courses may help map the status of KAP. The results of this study may also help authorized health physics officers design strategic plans to enhance the quality of such services in radiation departments. © 2018, Oman Medical Specialty Board. All rights reserved
- …