1,306 research outputs found

    Surface EM waves on 1D Photonic Crystals

    Get PDF
    We study surface states of 1D photonic crystals using a semiclassical coupled wave theory. Both TE and TM modes are treated. We derive analytic approximations that clarify the systematics of the dispersion relations, and the roles of the various parameters defining the crystal.Comment: 7 pages, 8 figure

    A model for single electron decays from a strongly isolated quantum dot

    Get PDF
    Recent measurements of electron escape from a non-equilibrium charged quantum dot are interpreted within a 2D separable model. The confining potential is derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the confining potential and its dependence on electron occupation.Comment: 9 pages, 10 figure

    Enhanced observability of quantum post-exponential decay using distant detectors

    Get PDF
    We study the elusive transition from exponential to post-exponential (algebraic) decay of the probability density of a quantum particle emitted by an exponentially decaying source, in one dimension. The main finding is that the probability density at the transition time, and thus its observability, increases with the distance of the detector from the source, up to a critical distance beyond which exponential decay is no longer observed. Solvable models provide explicit expressions for the dependence of the transition on resonance and observational parameters, facilitating the choice of optimal conditions

    Classical picture of post-exponential decay

    Get PDF
    Post-exponential decay of the probability density of a quantum particle leaving a trap can be reproduced accurately, except for interference oscillations at the transition to the post-exponential regime, by means of an ensemble of classical particles emitted with constant probability per unit time and the same half-life as the quantum system. The energy distribution of the ensemble is chosen to be identical to the quantum distribution, and the classical point source is located at the scattering length of the corresponding quantum system. A 1D example is provided to illustrate the general argument
    corecore