520 research outputs found
Probing quantum coherence in qubit arrays
We discuss how the observation of population localization effects in
periodically driven systems can be used to quantify the presence of quantum
coherence in interacting qubit arrays. Essential for our proposal is the fact
that these localization effects persist beyond tight-binding Hamiltonian
models. This result is of special practical relevance in those situations where
direct system probing using tomographic schemes becomes infeasible beyond a
very small number of qubits. As a proof of principle, we study analytically a
Hamiltonian system consisting of a chain of superconducting flux qubits under
the effect of a periodic driving. We provide extensive numerical support of our
results in the simple case of a two-qubits chain. For this system we also study
the robustness of the scheme against different types of noise and disorder. We
show that localization effects underpinned by quantum coherent interactions
should be observable within realistic parameter regimes in chains with a larger
number o
Foregrounds in the BOOMERANG-LDB data: a preliminary rms analysis
We present a preliminary analysis of the BOOMERanG LDB maps, focused on
foregrounds. BOOMERanG detects dust emission at moderately low galactic
latitudes () in bands centered at 90, 150, 240, 410 GHz. At higher
Galactic latitudes, we use the BOOMERanG data to set conservative upper limits
on the level of contamination at 90 and 150 GHz. We find that the mean square
signal correlated with the IRAS/DIRBE dust template is less than 3% of the mean
square signal due to CMB anisotropy
Images of the Early Universe from the BOOMERanG experiment
The CMB is the fundamental tool to study the properties of the early universe and of the
universe at large scales. In the framework of the Hot Big Bang model, when we look to
the CMB we look back in time to the end of the plasma era, at a redshift ~ 1000, when
the universe was ~ 50000 times younger, ~ 1000 times hotter and ~ 10^9 times denser
than today. The image of the CMB can be used to study the physical processes there, to
infer what happened before, and also to study the background geometry of our Universe
ℓ-space spectroscopy of the Cosmic Microwave Background with the BOOMERanG experiment
The BOOMERanG experiment has recently produced detailed maps of the Cosmic Microwave Background, where sub-horizon structures are resolved with good signal to noise ratio. A power spectrum (spherical harmonics) analysis of the maps detects three peaks, at multipoles ℓ = (213_(-13)^(+10)),(541_(-32)^(+20))(845_(-25)^(+12)). In this paper we discuss the data analysis and the implications of these results for cosmology
Top-transmon: hybrid superconducting qubit for parity-protected quantum computation
Qubits constructed from uncoupled Majorana fermions are protected from
decoherence, but to perform a quantum computation this topological protection
needs to be broken. Parity-protected quantum computation breaks the protection
in a minimally invasive way, by coupling directly to the fermion parity of the
system --- irrespective of any quasiparticle excitations. Here we propose to
use a superconducting charge qubit in a transmission line resonator (a socalled
transmon) to perform parity-protected rotations and read-out of a topological
(top) qubit. The advantage over an earlier proposal using a flux qubit is that
the coupling can be switched on and off with exponential accuracy, promising a
reduced sensitivity to charge noise.Comment: 7 pages, 5 figure
Decoherence in rf SQUID Qubits
We report measurements of coherence times of an rf SQUID qubit using pulsed
microwaves and rapid flux pulses. The modified rf SQUID, described by an
double-well potential, has independent, in situ, controls for the tilt and
barrier height of the potential. The decay of coherent oscillations is
dominated by the lifetime of the excited state and low frequency flux noise and
is consistent with independent measurement of these quantities obtained by
microwave spectroscopy, resonant tunneling between fluxoid wells and decay of
the excited state. The oscillation's waveform is compared to analytical results
obtained for finite decay rates and detuning and averaged over low frequency
flux noise.Comment: 24 pages, 13 figures, submitted to the journal Quantum Information
Processin
Noise Properties of the BOOMERANG Instrument
In this paper we report a short description of the BOOMERANG experiment explaining his scientific goal and the technologies implied. We concentrate then on the analysis of the noise properties discussing in particular the scan synchronous noise. Finally we present the calibration technique and the sensitivity of all the channels
The Quintessential CMB, Past & Future
The past, present and future of cosmic microwave background (CMB) anisotropy
research is discussed, with emphasis on the Boomerang and Maxima balloon
experiments. These data are combined with large scale structure (LSS)
information and high redshift supernova (SN1) observations to explore the
inflation-based cosmic structure formation paradigm. Here we primarily focus on
a simplified inflation parameter set, {omega_b,omega_{cdm},Omega_{tot},
Omega_Q,w_Q, n_s,tau_C, sigma_8}. After marginalizing over the other cosmic and
experimental variables, we find the current CMB+LSS+SN1 data gives
Omega_{tot}=1.04\pm 0.05, consistent with (non-baroque) inflation theory.
Restricting to Omega_{tot}=1, we find a nearly scale invariant spectrum, n_s
=1.03 \pm 0.07. The CDM density, omega_{cdm}=0.17\pm 0.02, is in the expected
range, but the baryon density, omega_b=0.030\pm 0.004, is slightly larger than
the current nucleosynthesis estimate. Substantial dark energy is inferred,
Omega_Q\approx 0.68\pm 0.05, and CMB+LSS Omega_Q values are compatible with the
independent SN1 estimates. The dark energy equation of state, parameterized by
a quintessence-field pressure-to-density ratio w_Q, is not well determined by
CMB+LSS (w_Q<-0.3 at 95%CL), but when combined with SN1 the resulting w_Q<-0.7
limit is quite consistent with the w_Q=-1 cosmological constant case. Though
forecasts of statistical errors on parameters for current and future
experiments are rosy, rooting out systematic errors will define the true
progress.Comment: 14 pages, 3 figs., in Proc. CAPP-2000 (AIP), CITA-2000-6
Exclusion limits on the WIMP-nucleon cross-section from the Cryogenic Dark Matter Search
The Cryogenic Dark Matter Search (CDMS) employs low-temperature Ge and Si
detectors to search for Weakly Interacting Massive Particles (WIMPs) via their
elastic-scattering interactions with nuclei while discriminating against
interactions of background particles. For recoil energies above 10 keV, events
due to background photons are rejected with >99.9% efficiency, and surface
events are rejected with >95% efficiency. The estimate of the background due to
neutrons is based primarily on the observation of multiple-scatter events that
should all be neutrons. Data selection is determined primarily by examining
calibration data and vetoed events. Resulting efficiencies should be accurate
to about 10%. Results of CDMS data from 1998 and 1999 with a relaxed
fiducial-volume cut (resulting in 15.8 kg-days exposure on Ge) are consistent
with an earlier analysis with a more restrictive fiducial-volume cut.
Twenty-three WIMP candidate events are observed, but these events are
consistent with a background from neutrons in all ways tested. Resulting limits
on the spin-independent WIMP-nucleon elastic-scattering cross-section exclude
unexplored parameter space for WIMPs with masses between 10-70 GeV c^{-2}.
These limits border, but do not exclude, parameter space allowed by
supersymmetry models and accelerator constraints. Results are compatible with
some regions reported as allowed at 3-sigma by the annual-modulation
measurement of the DAMA collaboration. However, under the assumptions of
standard WIMP interactions and a standard halo, the results are incompatible
with the DAMA most likely value at >99.9% CL, and are incompatible with the
model-independent annual-modulation signal of DAMA at 99.99% CL in the
asymptotic limit.Comment: 40 pages, 49 figures (4 in color), submitted to Phys. Rev. D;
v.2:clarified conclusions, added content and references based on referee's
and readers' comments; v.3: clarified introductory sections, added figure
based on referee's comment
- …
