4,319 research outputs found

    Striped superconductors in the extended Hubbard model

    Full text link
    We present a minimal model of a doped Mott insulator that simultaneously supports antiferromagnetic stripes and d-wave superconductivity. We explore the implications for the global phase diagram of the superconducting cuprates. At the unrestricted mean-field level, the various phases of the cuprates, including weak and strong pseudogap phases, and two different types of superconductivity in the underdoped and the overdoped regimes, find a natural interpretation. We argue that on the underdoped side, the superconductor is intrinsically inhomogeneous -- striped coexistence of of superconductivity and magnetism -- and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. On the overdoped side, the state is overall homogeneous and the superconductivity is of the classical BCS type.Comment: 5 pages, 3 eps figures. Effect of t' on stripe filling + new references are adde

    Effect of nonhydrostatic pressure on the superconducting kagome metal CsV3_3Sb5_5

    Full text link
    High-pressure single-crystal x-ray diffraction experiments reveal that the superconducting kagome metal CsV3_3Sb5_5 transforms from hexagonal (P6/mmmP6/mmm) to monoclinic (C2/mC2/m) symmetry above 10 GPa if nonhydrostatic pressure conditions are created in a diamond anvil cell with silicon oil as pressure-transmitting medium. This is contrary to the behavior of CsV3_3Sb5_5 under quasi-hydrostatic conditions in neon, with the hexagonal symmetry retained up to at least 20 GPa. Monoclinic distortion leaves the kagome planes almost unchanged but deforms honeycomb nets of the Sb atoms. Using ab initio density-functional calculations, we show that this distortion facilitates the pressure-induced shift of van Hove singularities away from the Fermi level and assists in the Fermi surface reconstruction caused by the formation of interlayer Sb-Sb bonds, thus adding a structural transition component to the reentrant behavior of CsV3_3Sb5_5.Comment: 5 pages, 4 figures, 2 table

    Nonlocality of Kohn-Sham exchange-correlation fields in dielectrics

    Full text link
    The theory of the macroscopic field appearing in the Kohn-Sham exchange-correlation potential for dielectric materials, as introduced by Gonze, Ghosez and Godby, is reexamined. It is shown that this Kohn-Sham field cannot be determined from a knowledge of the local state of the material (local crystal potential, electric field, and polarization) alone. Instead, it has an intrinsically nonlocal dependence on the global electrostatic configuration. For example, it vanishes in simple transverse configurations of a polarized dielectric, but not in longitudinal ones.Comment: 4 pages, two-column style with 2 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#dv_gg

    Effects of Backflow Correlation in the Three-Dimensional Electron Gas: Quantum Monte Carlo Study

    Full text link
    The correlation energy of the homogeneous three-dimensional interacting electron gas is calculated using the variational and fixed-node diffusion Monte Carlo methods, with trial functions that include backflow and three-body correlations. In the high density regime the effects of backflow dominate over those due to three-body correlations, but the relative importance of the latter increases as the density decreases. Since the backflow correlations vary the nodes of the trial function, this leads to improved energies in the fixed-node diffusion Monte Carlo calculations. The effects are comparable to those found for the two-dimensional electron gas, leading to much improved variational energies and fixed-node diffusion energies equal to the release-node energies of Ceperley and Alder within statistical and systematic errors.Comment: 14 pages, 5 figures, submitted to Physical Review

    Boltzmann equation and hydrodynamic fluctuations

    Full text link
    We apply the method of invariant manifolds to derive equations of generalized hydrodynamics from the linearized Boltzmann equation and determine exact transport coefficients, obeying Green-Kubo formulas. Numerical calculations are performed in the special case of Maxwell molecules. We investigate, through the comparison with experimental data and former approaches, the spectrum of density fluctuations and address the regime of finite Knudsen numbers and finite frequencies hydrodynamics.Comment: This is a more detailed version of a related paper: I.V. Karlin, M. Colangeli, M. Kroger, PRL 100 (2008) 214503, arXiv:0801.2932. It contains comparison between predictions and experiment, in particular. 11 pages, 6 figures, 2 table

    Inhibition of IGF1-R overcomes IGFBP7-induced chemotherapy resistance in T-ALL

    Get PDF
    Background T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease with the need for treatment optimization. Previously, high expression of Insulin-like growth factor binding protein 7 (IGFBP7), a member of the IGF system, was identified as negative prognostic factor in adult T-ALL patients. Since aberrant IGFBP7 expression was observed in a variety of neoplasia and was relevant for prognosis in T-ALL, we investigated the functional role of IGFBP7 in Jurkat and Molt-4 cells as in vitro models for T-ALL. Methods Jurkat and Molt-4 cells were stably transfected with an IGFBP7 over-expression vector or the empty vector as control. Proliferation of the cells was assessed by WST-1 assays and cell cycle status was measured by flow-cytometry after BrDU/7-AAD staining. The effect of IGFBP7 over-expression on sensitivity to cytostatic drugs was determined in AnnexinV/7-AAD assays. IGF1-R protein expression was measured by Western Blot and flow-cytometric analysis. IGF1-R associated gene expression profiles were generated from microarray gene expression data of 86 T-ALL patients from the Microarrays Innovations in Leukemia (MILE) multicenter study. Results IGFBP7-transfected Jurkat cells proliferated less, leading to a longer survival in a nutrient–limited environment. Both IGFBP7-transfected Jurkat and Molt-4 cells showed an arrest in the G0/G1 cell cycle phase. Furthermore, Jurkat IGFBP7-transfected cells were resistant to vincristine and asparaginase treatment. Surface expression and whole protein measurement of IGF1-R protein expression showed a reduced abundance of the receptor after IGFBP7 transfection in Jurkat cells. Interestingly, combination of the IGF1-R inhibitor NPV-AEW541 restored sensitivity to vincristine in IGFBP7-transfected cells. Additionally, IGF1-R associated GEP revealed an up-regulation of important drivers of T-ALL pathogenesis and regulators of chemo-resistance and apoptosis such as NOTCH1, BCL-2, PRKCI, and TP53. Conclusion This study revealed a proliferation inhibiting effect of IGFBP7 by G0/G1 arrest and a drug resistance-inducing effect of IGFBP7 against vincristine and asparaginase in T-ALL. These results provide a model for the previously observed association between high IGFBP7 expression and chemotherapy failure in T-ALL patients. Since the resistance against vincristine was abolished by IGF1-R inhibition, IGFBP7 could serve as biomarker for patients who may benefit from therapies including IGF1-R inhibitors in combination with chemotherapy

    The Coupled Electron-Ion Monte Carlo Method

    Full text link
    In these Lecture Notes we review the principles of the Coupled Electron-Ion Monte Carlo methods and discuss some recent results on metallic hydrogen.Comment: 38 pages, 6 figures, Lecture notes for the International School of Solid State Physics, 34th course: "Computer Simulation in Condensed Matter: from Materials to Chemical Biology", 20 July-1 August 2005 Erice (Italy). To appear in Lecture Notes in Physics (2006

    A quantum Monte Carlo study of the one-dimensional ionic Hubbard model

    Full text link
    Quantum Monte Carlo methods are used to study a quantum phase transition in a 1D Hubbard model with a staggered ionic potential (D). Using recently formulated methods, the electronic polarization and localization are determined directly from the correlated ground state wavefunction and compared to results of previous work using exact diagonalization and Hartree-Fock. We find that the model undergoes a thermodynamic transition from a band insulator (BI) to a broken-symmetry bond ordered (BO) phase as the ratio of U/D is increased. Since it is known that at D = 0 the usual Hubbard model is a Mott insulator (MI) with no long-range order, we have searched for a second transition to this state by (i) increasing U at fixed ionic potential (D) and (ii) decreasing D at fixed U. We find no transition from the BO to MI state, and we propose that the MI state in 1D is unstable to bond ordering under the addition of any finite ionic potential. In real 1D systems the symmetric MI phase is never stable and the transition is from a symmetric BI phase to a dimerized BO phase, with a metallic point at the transition

    Pressure evolution of electron dynamics in the superconducting kagome metal CsV3_3Sb5_5

    Full text link
    The coexistence of the charge-density wave (CDW) and superconducting phases and their tunability under external pressure remains one of the key points in understanding the electronic structure of AAV3_3Sb5_5 (AA = K, Rb, Cs) kagome metals. Here, we employ synchrotron-based infrared spectroscopy assisted by density-functional calculations to study the pressure evolution of the electronic structure at room temperature up to 17 GPa experimentally. The optical spectrum of CsV3_3Sb5_5 is characterized by the presence of localized carriers seen as a broad peak at finite frequencies in addition to the conventional metallic Drude response. The pressure dependence of this low-energy peak reflects the re-entrant behavior of superconductivity and may be interpreted in terms of electron-phonon coupling, varying with the growth and shrinkage of the Fermi surface. Moreover, drastic modifications in the low-energy interband absorptions are observed upon the suppression of CDW. These changes are related to the upward shift of the Sb2 px+pyp_x+p_y band that eliminates part of the Fermi surface around the MM-point, whereas band saddle points do not move significantly. These observations shed new light on the mixed electronic and lattice origin of the CDW in CsV3_3Sb5_5
    • …
    corecore