496 research outputs found
Cash flow generalisations of non-life insurance expert systems estimating outstanding liabilities
For as long as anyone remembers non-life insurance companies have used the so called chain ladder method to reserve for outstanding liabilities. When historical payments of claims are used as observations then chain ladder can be understood as estimating a multiplicative model. In most non-life insurance companies a mixture of paid data and expert knowledge, incurred data, is used as observations instead of just payments. This paper considers recent statistical cash flow models for asset-liability hedging, capital allocation and other management decision tools, and develops two new such methods incorporating available incurred data expert knowledge into the outstanding liability cash flow model. These two new methods unbundle the incurred data to aggregates of estimates of the future cash flow. By a re-distribution to the right algorithm, the estimated future cash flow is incorporated in the overall estimation process and considered as data. A statistical validation technique is developed for these two new methods and they are compared to the other recent cash flow methods. The two methods show to have a very good performance on the real-life data set considered
Recommended from our members
The Link Between Classical Reserving and Granular Reserving Through Double Chain Ladder and its Extensions
The relationship of the chain ladder method to mathematical statistics has long been debated in actuarial science. During the nineties it became clear that the originally deterministic chain ladder can be seen as an autoregressive time series or as a multiplicative Poisson model. This paper draws on recent research and concludes that chain ladder can be seen as a structured histogram. This gives a direct link between classical aggregate methods and continuous granular methods. When the histogram is replaced by a smooth counter part, we have a continuous chain ladder model. Re-inventing classical chain ladder via double chain ladder and its extensions introduces statistically solid approaches of combining paid and incurred data with direct link to granular data approaches. This paper goes through some of the extensions of double chain ladder and introduces new approaches to incorporating and modelling incurred data
Effect of maternal panic disorder on mother-child interaction and relation to child anxiety and child self-efficacy
To determine whether mothers with panic disorder with or without agoraphobia interacted differently with their children than normal control mothers, 86 mothers and their adolescents (aged between 13 and 23 years) were observed during a structured play situation. Maternal as well as adolescent anxiety status was assessed according to a structured diagnostic interview. Results showed that mothers with panic disorder/agoraphobia showed more verbal control, were more criticizing and less sensitive during mother-child interaction than mothers without current mental disorders. Moreover, more conflicts were observed between mother and child dyadic interactions when the mother suffered from panic disorder. The comparison of parenting behaviors among anxious and non-anxious children did not reveal any significant differences. These findings support an association between parental over-control and rejection and maternal but not child anxiety and suggest that particularly mother anxiety status is an important determinant of parenting behavior. Finally, an association was found between children’s perceived self-efficacy, parental control and child anxiety symptoms
Magnetic Dipole Sum Rules for Odd-Mass Nuclei
Sum rules for the total- and scissors-mode M1 strength in odd-A nuclei are
derived within the single-j interacting boson-fermion model. We discuss the
physical content and geometric interpretation of these sum rules and apply them
to ^{167}Er and ^{161}Dy. We find consistency with the former measurements but
not with the latter.Comment: 13 pages, Revtex, 1 figure, Phys. Rev. Lett. in pres
First observation of scissors mode states in an odd-mass nucleus
Nuclear resonance fluorescence experiments are reported to search for enhanced M1 scissors mode states in the deformed odd-mass nucleus Dy163. A concentration of dipole strengths near 3 MeV excitation energy is found, which fits nicely into the systematics observed for M1 excitations in the neighboring even-even Dy isotopes. The observed strength distribution and the decay branching ratios are discussed in the context of the interacting boson-fermion model.Dirección General de Investigación Científica y Técnica PB89-063
Nuclear Scissors Mode with Pairing
The coupled dynamics of the scissors mode and the isovector giant quadrupole
resonance are studied using a generalized Wigner function moments method taking
into account pair correlations. Equations of motion for angular momentum,
quadrupole moment and other relevant collective variables are derived on the
basis of the time dependent Hartree-Fock-Bogoliubov equations. Analytical
expressions for energy centroids and transitions probabilities are found for
the harmonic oscillator model with the quadrupole-quadrupole residual
interaction and monopole pairing force. Deformation dependences of energies and
values are correctly reproduced. The inclusion of pair correlations
leads to a drastic improvement in the description of qualitative and
quantitative characteristics of the scissors mode.Comment: 36 pages, 5 figures, the results of calculation by another method and
the section concerning currents are adde
Determination of RET Sequence Variation in an MEN2 Unaffected Cohort Using Multiple-Sample Pooling and Next-Generation Sequencing
Multisample, nonindexed pooling combined with next-generation sequencing (NGS) was used to discover RET proto-oncogene sequence variation within a cohort known to be unaffected by multiple endocrine neoplasia type 2 (MEN2). DNA samples (113 Caucasians, 23 persons of other ethnicities) were amplified for RET intron 9 to intron 16 and then divided into 5 pools of <30 samples each before library prep and NGS. Two controls were included in this study, a single sample and a pool of 50 samples that had been previously sequenced by the same NGS methods. All 59 variants previously detected in the 50-pool control were present. Of the 61 variants detected in the unaffected cohort, 20 variants were novel changes. Several variants were validated by high-resolution melting analysis and Sanger sequencing, and their allelic frequencies correlated well with those determined by NGS. The results from this unaffected cohort will be added to the RET MEN2 database
Molecular wires – impact of pi-conjugation and implementation of molecular bottlenecks
In this review we highlight recent progress in the field of photochemically and thermally induced electron transport through molecular bridges as integrative parts of electron donor–bridge–acceptor conjugates. The major emphasis is hereby on the design and the modular composition of the bridges. To this end, we will demonstrate that control over attenuation factors and reorganization energies, on one hand, as well as electronic and electron–vibration couplings, on the other hand, enables tuning electron transport over distances as short as 3.5 Å and as large as 50 Å by up to nine orders of magnitude. In terms of electron transport, the maximum extreme is given by carbon-bridged oligo-p-phenylenevinylenes of different lengths, while a zinc tetraphenylporphyrin free base tetraphenylporphyrin dyad constitutes the minimum extreme
Using carbon nanodots as inexpensive and environmentally friendly sensitizers in mesoscopic solar cells
We discuss the use of carbon nanodots (CNDs) as sensitizers in mesoscopic solar cells. The CNDs are synthesized using a one-step, bottom-up microwave approach with citric acid, urea, and formic acid as precursors in aqueous media. Their light-harvesting capabilities can be tuned by adjusting the synthetic parameters. Comprehensive spectroscopic and theoretical studies allow us to rationalize the nature of their absorption features. Promising power conversion efficiencies (η) of 0.24% can be achieved from these cheap and eco-friendly sensitizers by optimizing the solar-cell assembly process. Interestingly, we found that extending the light absorption towards longer wavelengths does not necessarily improve the performance of the solar cells, since the longer-wavelength absorption features hardly contribute to the cells' photo-action spectra, so that the overall power conversion efficiency is actually worse. The origin of the lower performance is corroborated in transient absorption spectroscopy and photovoltage decay measurements. Our work points, on one hand, to the limits of as-synthesized CNDs as photosensitizers and, on the other hand, to possible improvements
Conformational flexibility of nitroxide biradicals determined by X-band PELDOR experiments
- …
