346 research outputs found

    Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 8670–8688, doi:10.1002/2016JC011764.Discharge of surface-derived meltwater at the submerged base of Greenland's marine-terminating glaciers creates subglacial discharge plumes that rise along the glacier/ocean interface. These plumes impact submarine melting, calving, and fjord circulation. Observations of plume properties and dynamics are challenging due to their proximity to the calving edge of glaciers. Therefore, to date information on these plumes has been largely derived from models. Here we present temperature, salinity, and velocity data collected in a plume that surfaced at the edge of Saqqarliup Sermia, a midsized Greenlandic glacier. The plume is associated with a narrow core of rising waters approximately 20 m in diameter at the ice edge that spreads to a 200 m by 300 m plume pool as it reaches the surface, before descending to its equilibrium depth. Volume flux estimates indicate that the plume is primarily driven by subglacial discharge and that this has been diluted in a ratio of 1:10 by the time the plume reaches the surface. While highly uncertain, meltwater fluxes are likely 2 orders of magnitude smaller than the subglacial discharge flux. The overall plume characteristics agree with those predicted by theoretical plume models for a convection-driven plume with limited influence from submarine melting.National Science Foundation (NSF) Grant Numbers: PLR-1418256 , OCE-1434041; Woods Hole Oceanographic Institution (WHOI) Ocean and Climate Change Institute (OCCI) Arctic Research Initiative OCCI; National Aeronautics and Space Administration Grant Number: NNX10AN83H2017-06-1

    Minimal Impact of Late‐Season Melt Events on Greenland Ice Sheet Annual Motion

    Get PDF
    Extreme melt and rainfall events can induce temporary acceleration of Greenland Ice Sheet motion, leading to increased advection of ice to lower elevations where melt rates are higher. In a warmer climate, these events are likely to become more frequent. In September 2022, seasonally unprecedented air temperatures caused multiple melt events over the Greenland Ice Sheet, generating the highest melt rates of the year. The scale and timing of the largest event overwhelmed the subglacial drainage system, enhancing basal sliding and increasing ice velocities by up to ∼240% relative to pre-event velocities. However, ice motion returned rapidly to pre-event levels, and the speed-ups caused a regional increase in annual ice discharge of only ∼2% compared to when the effects of the speed-ups were excluded. Therefore, although late melt-season events are forecast to become more frequent and drive significant runoff, their impact on net mass loss via ice discharge is minimal

    Roughness of a subglacial conduit under Hansbreen, Svalbard

    Get PDF
    K.M., J.G., X.L. and Y.C. were supported by the National Science Foundation (NSF) under Grant No. #1503928. Thefieldwork team (K.M., J.G., M.C.) were supported by the Norwegian Arctic Research Council and Svalbard Science Forum, RiS #6106. K.M. was also supported by the National Aeronautics and Space Administration (NASA)Headquarters under the NASA Earth and Space Science Fellowship Program – Grant NNX10AN83H, the University of California, Santa Cruz, and the Woods Hole Oceanographic Institution Ocean and Climate Change Institute post-graduate fellowship. Portions of this work were conducted while J.G. was supported by the NSF EAR Postdoctoral Fellowship (#0946767). S.T. was funded by NASA grant NNX11AH61G.Hydraulic roughness exerts an important but poorly understood control on water pressure in subglacial conduits. Where relative roughness values are 5%. Here we report the first quantitative assessment of roughness heights and hydraulic diameters in a subglacial conduit. We measured roughness heights in a 125 m long section of a subglacial conduit using structure-from-motion to produce a digital surface model, and hand-measurements of the b-axis of rocks. We found roughness heights from 0.07 to 0.22 m and cross-sectional areas of 1-2 m2, resulting in relative roughness of 3-12% and >5% for most locations. A simple geometric model of varying conduit diameter shows that when the conduit is small relative roughness is >30% and has large variability. Our results suggest that parameterizations of conduit hydraulic roughness in subglacial hydrological models will remain challenging until hydraulic diameters exceed roughness heights by a factor of 20, or the conduit radius is >1 m for the roughness elements observed here.Publisher PDFPeer reviewe

    The sensitivity of primary productivity in Disko Bay, a coastal Arctic ecosystem, to changes in freshwater discharge and sea ice cover

    Get PDF
    The Greenland ice sheet is melting, and the rate of ice loss has increased 6-fold since the 1980s. At the same time, the Arctic sea ice extent is decreasing. Meltwater runoff and sea ice reduction both influence light and nutrient availability in the coastal ocean, with implications for the timing, distribution, and magnitude of phytoplankton production. However, the integrated effect of both glacial and sea ice melt is highly variable in time and space, making it challenging to quantify. In this study, we evaluate the relative importance of these processes for the primary productivity of Disko Bay, west Greenland, one of the most important areas for biodiversity and fisheries around Greenland. We use a high-resolution 3D coupled hydrodynamic–biogeochemical model for 2004–2018 validated against in situ observations and remote sensing products. The model-estimated net primary production (NPP) varied between 90–147 gC m−2 yr−1 during 2004–2018, a period with variable freshwater discharges and sea ice cover. NPP correlated negatively with sea ice cover and positively with freshwater discharge. Freshwater discharge had a strong local effect within ∼ 25 km of the source-sustaining productive hot spots during summer. When considering the annual NPP at bay scale, sea ice cover was the most important controlling factor. In scenarios with no sea ice in spring, the model predicted a ∼ 30 % increase in annual production compared to a situation with high sea ice cover. Our study indicates that decreasing ice cover and more freshwater discharge can work synergistically and will likely increase primary productivity of the coastal ocean around Greenland.publishedVersio

    Rapid basal melting of the Greenland Ice Sheet from surface meltwater drainage

    Get PDF
    Subglacial hydrologic systems regulate ice sheet flow, causing acceleration or deceleration, depending on hydraulic efficiency and the rate at which surface meltwater is delivered to the bed. Because these systems are rarely observed, ice sheet basal drainage represents a poorly integrated and uncertain component of models used to predict sea level changes. Here, we report radar-derived basal melt rates and unexpectedly warm subglacial conditions beneath a large Greenlandic outlet glacier. The basal melt rates averaged 14 mm ⋅d−1 over 4 months, peaking at 57 mm ⋅d−1 when basal water temperature reached +0.88 ∘C in a nearby borehole. We attribute both observations to the conversion of potential energy of surface water to heat in the basal drainage system, which peaked during a period of rainfall and intense surface melting. Our findings reveal limitations in the theory of channel formation, and we show that viscous dissipation far surpasses other basal heat sources, even in a distributed, high-pressure system

    Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing

    Get PDF
    This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy

    A first constraint on basal melt-water production of the Greenland ice sheet

    Get PDF
    PROMICE is funded by the Geological Survey of Denmark and Greenland (GEUS) and the Danish Ministry of Climate, Energy and Utilities under the Danish Cooperation for Environment in the Arctic (DANCEA), and is conducted in collaboration with DTU Space (Technical University of Denmark) and Asiaq, Greenland.The Greenland ice sheet has been one of the largest sources of sea-level rise since the early 2000s. However, basal melt has not been included explicitly in assessments of ice-sheet mass loss so far. Here, we present the first estimate of the total and regional basal melt produced by the ice sheet and the recent change in basal melt through time. We find that the ice sheet’s present basal melt production is 21.4 +4.4/−4.0 Gt per year, and that melt generated by basal friction is responsible for about half of this volume. We estimate that basal melting has increased by 2.9 ± 5.2 Gt during the first decade of the 2000s. As the Arctic warms, we anticipate that basal melt will continue to increase due to faster ice flow and more surface melting thus compounding current mass loss trends, enhancing solid ice discharge, and modifying fjord circulation.Publisher PDFPeer reviewe

    Blood Flow and Glucose Metabolism in Stage IV Breast Cancer: Heterogeneity of Response During Chemotherapy

    Get PDF
    Objective: The purpose of the study was to compare early changes in blood flow (BF) and glucose metabolism (MRglu) in metastatic breast cancer lesions of patients treated with chemotherapy. Methods: Eleven women with stage IV cancer and lesions in breast, lymph nodes, liver, and bone were scanned before treatment and after the first course of chemotherapy. BF, distribution volume of water (Vd), MRglu/BF ratio, MRgluand its corresponding rate constants K1and k3were compared per tumor lesion before and during therapy. Results: At baseline, mean BF and MRgluvaried among different tumor lesions, but mean Vdwas comparable in all lesions. After one course of chemotherapy, mean MRgludecreased in all lesions. Mean BF decreased in breast and node lesions and increased in bone lesions. Vddecreased in breast and nodes, but did not change in bone lesions. The MRglu/BF ratio decreased in breast and bone lesions and increased in node lesions. In patients with multiple tumor lesions BF and MRgluresponse could be very heterogeneous, even within similar types of metastases. BF and MRgluincreased in lesions of patients who experienced early disease progression or showed no response during clinical follow-up. Conclusion: BF and MRgluchanges separately give unique information on different aspects of tumor response to chemotherapy. Changes in BF and MRgluparameters can be remarkably heterogeneous in patients with multiple lesions

    Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations

    Get PDF
    At tidewater glaciers, plume dynamics affect submarine melting, fjord circulation, and the mixing of meltwater. Models often rely on buoyant plume theory to parameterize plumes and submarine melting; however, these parameterizations are largely untested due to a dearth of near‐glacier measurements. Here we present a high‐resolution ocean survey by ship and remotely operated boat near the terminus of Kangerlussuup Sermia in west Greenland. These novel observations reveal the 3‐D structure and transport of a near‐surface plume, originating at a large undercut conduit in the glacier terminus, that is inconsistent with axisymmetric plume theory, the most common representation of plumes in ocean‐glacier models. Instead, the observations suggest a wider upwelling plume—a “truncated” line plume of ∼200 m width—with higher entrainment and plume‐driven melt compared to the typical axisymmetric representation. Our results highlight the importance of a subglacial outlet's geometry in controlling plume dynamics, with implications for parameterizing the exchange flow and submarine melt in glacial fjord models.NNX12AP50
    corecore