219 research outputs found
Stable fourfold configurations for small vacancy clusters in silicon from ab initio calculations
Using density-functional-theory calculations, we have identified new stable
configurations for tri-, tetra-, and penta-vacancies in silicon. These new
configurations consist of combinations of a ring-hexavacancy with three, two,
or one interstitial atoms, respectively, such that all atoms remain fourfold.
As a result, their formation energies are lower by 0.6, 1.0, and 0.6 eV,
respectively, than the ``part of a hexagonal ring'' configurations, believed up
to now to be the lowest-energy states
Vacancy complexes in nonequilibrium germanium-tin semiconductors
Understanding the nature and behavior of vacancy-like defects in epitaxial
GeSn metastable alloys is crucial to elucidate the structural and
optoelectronic properties of these emerging semiconductors. The formation of
vacancies and their complexes is expected to be promoted by the relatively low
substrate temperature required for the epitaxial growth of GeSn layers with Sn
contents significantly above the equilibrium solubility of 1 at.%. These
defects can impact both the microstructure and charge carrier lifetime. Herein,
to identify the vacancy-related complexes and probe their evolution as a
function of Sn content, depth-profiled pulsed low-energy positron annihilation
lifetime spectroscopy and Doppler broadening spectroscopy were combined to
investigate GeSn epitaxial layers with Sn content in the 6.5-13.0 at.% range.
The samples were grown by chemical vapor deposition method at temperatures
between 300 and 330 {\deg}C. Regardless of the Sn content, all GeSn samples
showed the same depth-dependent increase in the positron annihilation line
broadening parameters, which confirmed the presence of open volume defects. The
measured average positron lifetimes were the highest (380-395 ps) in the region
near the surface and monotonically decrease across the analyzed thickness, but
remain above 350 ps. All GeSn layers exhibit lifetimes that are 85 to 110 ps
higher than the Ge reference layers. Surprisingly, these lifetimes were found
to decrease as Sn content increases in GeSn layers. These measurements indicate
that divacancies are the dominant defect in the as-grown GeSn layers. However,
their corresponding lifetime was found to be shorter than in epitaxial Ge thus
suggesting that the presence of Sn may alter the structure of divacancies.
Additionally, GeSn layers were found to also contain a small fraction of
vacancy clusters, which become less important as Sn content increases
The Enterovirus 71 A-particle Forms a Gateway to Allow Genome Release: A CryoEM Study of Picornavirus Uncoating
Since its discovery in 1969, enterovirus 71 (EV71) has emerged as a serious worldwide health threat. This human pathogen of the picornavirus family causes hand, foot, and mouth disease, and also has the capacity to invade the central nervous system to cause severe disease and death. Upon binding to a host receptor on the cell surface, the virus begins a two-step uncoating process, first forming an expanded, altered "A-particle", which is primed for genome release. In a second step after endocytosis, an unknown trigger leads to RNA expulsion, generating an intact, empty capsid. Cryo-electron microscopy reconstructions of these two capsid states provide insight into the mechanics of genome release. The EV71 A-particle capsid interacts with the genome near the icosahedral two-fold axis of symmetry, which opens to the external environment via a channel ~10 Å in diameter that is lined with patches of negatively charged residues. After the EV71 genome has been released, the two-fold channel shrinks, though the overall capsid dimensions are conserved. These structural characteristics identify the two-fold channel as the site where a gateway forms and regulates the process of genome release. © 2013 Shingler et al
Dissociation of Hydrofluorocarbon Molecules after Electron Impact in Plasma
The process of dissociation for two hydrofluorocarbon molecules in low triplet states excited by electron impact in plasma is investigated by ab initio molecular dynamics (AIMD). The interest in the dissociation of hydrofluorocarbons in plasma is motivated by their role in plasma etching in microelectronic technologies. Dissociation of triplet states is very fast, and the reaction products can be predicted. In this work, it was found that higher triplet states relax into the lowest triplet state within a few femtoseconds due to nonadiabatic dynamics, such that the simplest ab initio MD on the lowest triplet state seems to give a reasonable estimate of the reaction channels branching ratios. We provide evidence of the existence of simple rules for the dissociation of hydrofluorocarbon molecules in triplet states. For molecules with a double bond, the bonds adjacent to the double bond dissociate faster than the other bonds
Effects of preset sequential administrations of sunitinib and everolimus on tumour differentiation in Caki-1 renal cell carcinoma.
BACKGROUND: Sunitinib (VEGFR/PDGFR inhibitor) and everolimus (mTOR inhibitor) are both approved for advanced renal cell carcinoma (RCC) as first-line and second-line therapy, respectively. In the clinics, sunitinib treatment is limited by the emergence of acquired resistance, leading to a switch to second-line treatment at progression, often based on everolimus. No data have been yet generated on programmed alternating sequential strategies combining alternative use of sunitinib and everolimus before progression. Such strategy is expected to delay the emergence of acquired resistance and improve tumour control. The aim of our study was to assess the changes in tumours induced by three different sequences administration of sunitinib and everolimus.
METHODS: In human Caki-1 RCC xenograft model, sunitinib was alternated with everolimus every week, every 2 weeks, or every 3 weeks. Effects on necrosis, hypoxia, angiogenesis, and EMT status were assessed by immunohisochemistry and immunofluorescence.
RESULTS: Sunitinib and everolimus programmed sequential regimens before progression yielded longer median time to tumour progression than sunitinib and everolimus monotherapies. In each group of treatment, tumour growth control was associated with inhibition of mTOR pathway and changes from a mesenchymal towards an epithelial phenotype, with a decrease in vimentin and an increase in E-cadherin expression. The sequential combinations of these two agents in a RCC mouse clinical trial induced antiangiogenic effects, leading to tumour necrosis.
CONCLUSIONS: In summary, our study showed that alternate sequence of sunitinib and everolimus mitigated the development of mesenchymal phenotype compared with sunitinib as single agent
Hairpin Formation in Friedreich's Ataxia Triplet Repeat Expansion
Triplet repeat tracts occur throughout the human genome. Expansions of a (GAA)(n)/(TTC)(n) repeat tract during its transmission from parent to child are tightly associated with the occurrence of Friedreich's ataxia. Evidence supports DNA slippage during DNA replication as the cause of the expansions. DNA slippage results in single-stranded expansion intermediates. Evidence has accumulated that predicts that hairpin structures protect from DNA repair the expansion intermediates of all of the disease-associated repeats except for those of Friedreich's ataxia. How the latter repeat expansions avoid repair remains a mystery because (GAA)(n) and (TTC)(n) repeats are reported not to self-anneal. To characterize the Friedreich's ataxia intermediates, we generated massive expansions of (GAA)(n) and (TTC)(n) during DNA replication in vitro using human polymerase beta and the Klenow fragment of Escherichia coli polymerase I. Electron microscopy, endonuclease cleavage, and DNA sequencing of the expansion products demonstrate, for the first time, the occurrence of large and growing (GAA)(n) and (TTC)(n) hairpins during DNA synthesis. The results provide unifying evidence that predicts that hairpin formation during DNA synthesis mediates all of the disease-associated, triplet repeat expansions
An ab initio multiple cloning approach for the simulation of photoinduced dynamics in conjugated molecules
We present a new implementation of the Ab Initio Multiple Cloning (AIMC) method, which is applied for non-adiabatic excited-state molecular dynamics simulations of photoinduced processes in conjugated molecules. Within our framework, the multidimensional wave-function is decomposed into a superposition of a number of Gaussian coherent states guided by Ehrenfest trajectories that are suited to clone and swap their electronic amplitudes throughout the simulation. New generalized cloning criteria are defined and tested. Because of sharp changes of the electronic states, which are common for conjugated polymers, the electronic parts of the Gaussian coherent states are represented in the Time Dependent Diabatic Basis (TDDB). The input to these simulations in terms of the excited-state energies, gradients and non-adiabatic couplings, is calculated on-the-fly using the Collective Electron Oscillator (CEO) approach. As a test case, we consider the photoinduced unidirectional electronic and vibrational energy transfer between two- and three-ring linear poly(phenylene ethynylene) units linked by meta-substitution. The effects of the cloning procedure on electronic and vibrational coherence, relaxation and unidirectional energy transfer between dendritic branches are discussed
Details of ssDNA annealing revealed by an HSV-1 ICP8–ssDNA binary complex
Infected cell protein 8 (ICP8) from herpes simplex virus 1 was first identified as a single-strand (ss) DNA-binding protein. It is essential for, and abundant during, viral replication. Studies in vitro have shown that ICP8 stimulates model replication reactions, catalyzes annealing of complementary ssDNAs and, in combination with UL12 exonuclease, will catalyze ssDNA annealing homologous recombination. DNA annealing and strand transfer occurs within large oligomeric filaments of ssDNA-bound ICP8. We present the first 3D reconstruction of a novel ICP8–ssDNA complex, which seems to be the basic unit of the DNA annealing machine. The reconstructed volume consists of two nonameric rings containing ssDNA stacked on top of each other, corresponding to a molecular weight of 2.3 MDa. Fitting of the ICP8 crystal structure suggests a mechanism for the annealing reaction catalyzed by ICP8, which is most likely a general mechanism for protein-driven DNA annealing
- …
