46,596 research outputs found
Evaluating software development characteristics: A comparison of software errors in different environments
Error data obtained from two different software development environments are compared. To obtain data that was complete, accurate, and meaningful, a goal-directed data collection methodology was used. Changes made to software were monitored concurrently with its development. Similarities common to both environments are included: (1) the principal error was in the design and implementation of single routines; (2) few errors were the result of changes, required more than one attempt to correct, and resulted in other errors; (3) relatively few errors took more than a day to correct
Information reuse in dynamic spectrum access
Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE
Weiss oscillations in the electronic structure of modulated graphene
We present a theoretical study of the electronic structure of modulated
graphene in the presence of a perpendicular magnetic field. The density of
states and the bandwidth for the Dirac electrons in this system are determined.
The appearance of unusual Weiss oscillations in the bandwidth and density of
states is the main focus of this work.Comment: 8 pages, 2 figures, accepted in J. Phys.: Conden. mat
High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry
A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2 L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a Pb-207-Pb-204 double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28 +/- 21 pg(1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about +/- 1to +/- 10%(1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12 +/- 4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (+/- 2sd) of 700-1500 ppm and 1000-2000ppm were achieved for Pb-207/Pb-206, Pb-208/Pb-206 and Pb-206/Pb-204, Pb-207/Pb-204, Pb-208/Pb-204, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor Pb-204 isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the Pb-206/Pb-204 ratios are well correlated with Pb-207/Pb-206, underlining the significant improvement achieved in the measurement of the minor Pb-204 isotope
Evaluation of the micro-carburetor
A prototype sonic, variable-venturi automotive carburetor was evaluated for its effects on vehicle performance, fuel economy, and exhaust emissions. A 350 CID Chevrolet Impala vehicle was tested on a chassis dynamometer over the 1975 Federal Test Procedure, urban driving cycle. The Micro-carburetor was tested and compared with stock and modified-stock engine configurations. Subsequently, the test vehicle's performance characteristics were examined with the stock carburetor and again with the Micro-carburetor in a series of on-road driveability tests. The test engine was then removed from the vehicle and installed on an engine dynamometer. Engine tests were conducted to compare the fuel economy, thermal efficiency, and cylinder-to-cylinder mixture distribution of the Micro-carburetor to that of the stock configuration. Test results show increases in thermal efficiency and improvements in fuel economy at all test conditions. Improve fuel/air mixture preparation is implied from the information presented. Further improvements in fuel economy and exhaust emissions are possible through a detailed recalibration of the Micro-carburetor
Dephasing in (Ga,Mn)As nanowires and rings
To understand quantum mechanical transport in ferromagnetic semiconductor the
knowledge of basic material properties like phase coherence length and
corresponding dephasing mechanism are indispensable ingredients. The lack of
observable quantum phenomena prevented experimental access to these quantities
so far. Here we report about the observations of universal conductance
fluctuations in ferromagnetic (Ga,Mn)As. The analysis of the length and
temperature dependence of the fluctuations reveals a T^{-1} dependence of the
dephasing time.Comment: 5 pages, 4 figure
Violation of the Leggett-Garg Inequality in Neutrino Oscillations
The Leggett-Garg inequality, an analogue of Bell's inequality involving
correlations of measurements on a system at different times, stands as one of
the hallmark tests of quantum mechanics against classical predictions. The
phenomenon of neutrino oscillations should adhere to quantum-mechanical
predictions and provide an observable violation of the Leggett-Garg inequality.
We demonstrate how oscillation phenomena can be used to test for violations of
the classical bound by performing measurements on an ensemble of neutrinos at
distinct energies, as opposed to a single neutrino at distinct times. A study
of the MINOS experiment's data shows a greater than violation over
a distance of 735 km, representing the longest distance over which either the
Leggett-Garg inequality or Bell's inequality has been tested.Comment: Updated to match published version. 6 pages, 2 figure
Relevance of multiple-quasiparticle tunneling between edge states at \nu =p/(2np+1)
We present an explanation for the anomalous behavior in tunneling conductance
and noise through a point contact between edge states in the Jain series
, for extremely weak-backscattering and low temperatures [Y.C.
Chung, M. Heiblum, and V. Umansky, Phys. Rev. Lett. {\bf{91}}, 216804 (2003)].
We consider edge states with neutral modes propagating at finite velocity, and
we show that the activation of their dynamics causes the unexpected change in
the temperature power-law of the conductance. Even more importantly, we
demonstrate that multiple-quasiparticles tunneling at low energies becomes the
most relevant process. This result will be used to explain the experimental
data on current noise where tunneling particles have a charge that can reach
times the single quasiparticle charge. In this paper we analyze the
conductance and the shot noise to substantiate quantitatively the proposed
scenario.Comment: 4 pages, 2 figure
Decoherence in a system of many two--level atoms
I show that the decoherence in a system of degenerate two--level atoms
interacting with a bosonic heat bath is for any number of atoms governed by
a generalized Hamming distance (called ``decoherence metric'') between the
superposed quantum states, with a time--dependent metric tensor that is
specific for the heat bath.The decoherence metric allows for the complete
characterization of the decoherence of all possible superpositions of
many-particle states, and can be applied to minimize the over-all decoherence
in a quantum memory. For qubits which are far apart, the decoherence is given
by a function describing single-qubit decoherence times the standard Hamming
distance. I apply the theory to cold atoms in an optical lattice interacting
with black body radiation.Comment: replaced with published versio
Measurement of the lunar neutron density profile
An in situ measurement of the lunar neutron density from 20 to 400 g/sq cm depth between the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment using particle tracks produced by the B10(n, alpha)Li7 reaction. Both the absolute magnitude and depth profile of the neutron density are in good agreement with past theoretical calculations. The effect of cadmium absorption on the neutron density and in the relative Sm149 to Gd157 capture rates obtained experimentally implies that the true lunar Gd157 capture rate is about one half of that calculated theoretically
- …
