
EVALUATING SOFTWARE DEVELOPMENT CHARACTERISTICS:
A Comparison Of Software Errors In Different Environments

David M. Weiss
Naval Research Laboratory

Introduction

According to the mythology of computer science, the first computer program
ever written contained an error. Error detection and error correction are now
considered to be the major cost factors in software development [Boe72, Boe73,
Wol74]. Much current and recent research is devoted to finding ways to
prevent sotware errors. One result is that techniques claimed to be effective
for preventing errors are in abundance. Unfortunately, there have been few
empirical attempts to verify that proposed techniques work well in production
environments. Indeed, there have been few attempts even to collect data that
could yield insight into the issues involved. The purpose of this paper is to
compare error data obtained from two different software development
environments.

To obtain data that was complete, accurate, and meaningful, a
goal-directed data collection methodology was used. The approach was to
monitor changes made to software concurrently with its development. The
results reported here were obtained by applying the methodology to three
projects at NASA/GSFC, and one project at the Naval Research Laboratory
(NRL). Although all changes were monitored for most projects, we are
concerned here only with results obtained from the error data, and only with
data that may be used to compare the two environments. Readers interested in
a more detailed description of the research methodology or other analyses
using other data from the same sources are referred to [BasSl, Wei79, WeiSl].

Research Methodology

The methodology is goal oriented. It starts with a set of questions to be
answered, and proceeds step-by-step through the design and implementation of a
data collection and validation mechanism. Analysis of the data yields answers
to the questions of interest, and may also yield a new set of questions. The
procedure relies heavily on an interactive data validation process; those
supplying the data are interviewed for validation purposes concurrently with
the software development process. The methodology has six basic steps, as
described in the following.

1. Establish the goals of the data collection.
Many (but not all) of our goals are related to claims made for the
software development methodology being used. As an example, a goal
of a particular methodology might be to develop software that is easy
to change. The corresponding data collection goal is to evaluate the
success of the developers in meeting this goal, i.e. evaluate the
ease with which the software can be changed.

D. Weiss
NRL
Io f25

https://ntrs.nasa.gov/search.jsp?R=19820016135 2020-03-21T09:00:31+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42856664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Develop a list of questions of interest
Once the goals of the study are established, they are used to develop
a list of questions to be answered by the study. In general, each
goal will result in the generation of several different questions of
interest. For example, if the goal is to evaluate the ease with
which software can be changed, we may identify questions of interest
such as: "Is it clear where a change has to be made?", "Are
changes confined to a single modules?", "What was the average effort
involved in making a change?"

3. Establish data categories
Once the questions of interest have been established, categorization
schemes for the changes and errors to be examined may be constructed.
Each question generally induces a categorization scheme. If one
question is, "How many errors result from requirements changes?", one
will want to classify errors according to whether or not they are the
result of a change in requirements.

4. Design and test data collection forms
To provide a permanent copy of the data and to reinforce the
programmers' memories, a data collection form is used. Forms design
was one of the trickiest parts of the studies conducted, and will not
be discussed here.

5. Collect and validate data
Data are collected by requiring those people who are making software
changes to complete a change report form for each change made, as
soon as the change is completed. Validation consists of checking the
forms for correctness, consistency, and completeness, and
interviewing those filling out the forms in cases where such checks
reveal problems. Both collection and validation are concurrent with
software development.

6. Analyze the data
Data are analyzed by calculating the parameters and distributions
needed to answer the questions of interest.

To apply the methodology to the collection of change data, the following
definitions were used.

A change is an alteration to baselined design, code or documentation.

An error is a discrepancy between a specification and its implementation.

A modification is a change made for any reason other than to correct an
error.

D.Weiss
NRL
2 of 25

The Projects Studied

The studies reported here contain complete results from four different
projects. Two different environments and several different methodologies were
used. One environment was a research group at the Naval Research Laboratory
(NRL), and the other was a NASA software production environment at Goddard
Space Flight Center. Table 1 is an overview of the data collected for each
project. For the ARF project, only error data were collected. Table 2 gives
the values of parameters often used to characterize software development
projects.

The Architecture Research Facility

The purpose of the Architecture Research Facility (ARF) project, developed
at NRL, was to develop a facility for simulating different computer
architectures. The simulation is based on a description of the target
architecture written in the Instruction Set Processor language [Bel71].
A complete description of the ARF simulator is available elsewhere [Elo79].
Briefly, to simulate a machine, the ARF uses a set of tables that describe the
machine being simulated and its state, a module to perform instruction
simulation, and a module to handle the interface to the user. The machine
description contained in the tables is produced by an ISP compiler (an
existing compiler was used)

The ARF was developed by a team of nine people, not all full time.
Development took about ten months and 192 people-weeks, exclusive of
consulting and secretarial support, to develop. The delivered system
contained about 20,000 lines of FORTRAN code.

The primary goal of the ARF designers was to produce a working simulator
that would permit the simulation of small target-emachine programs. The
designers also viewed the ARF development as an experiment in the application
of software engineering technology [Elo79]. The key parts of the technology
used are the following.

* Rather than developing the whole system at one time, the ARF was to
be done using the family approach to software development [Par76].
The system was to be built in three main stages. Each stage would
produce a member of the ARF "family" of programs, providing different
facilities.

* The information-hiding principle [Par72a] was to be applied to
conceal design decisions that were expected to change during the
lifetime of the ARF.

* Informal design specifications, followed by standardized interface
specifications, followed by high-level language coding specifications
were written for each major module of the ARF before any code was
written. Each specification was reviewed before its successor was
produced.

* FORTRAN code was written from the coding specifications, compiled,
and then reviewed by someone other than the coder prior to debugging.
The coder debugged the code and delivered it for testing. A tester
(usually) other than the coder or designer, was selected to test the
debugged code.

D.Weiss
NRL
3 of 25

* At the possible expense of some run time performance, several
debugging aids were designed into the system to make development
easier. These included

a. A method for detecting errors involving improper access to
table entries, known as the binding mechanism,

b. A consistent execution-time error reporting scheme for
table interface functions, and

c. A mechanism for inserting, and turning on and off,
debugging code through the use of a corapile-time
preprocessor.

The Software Engineering Laboratory

The Software Engineering Laboratory (SEL) is a NASA sponsored project to
investigate the software development process, based at Goddard Space Flight
Center (GSFC). A number of different software development projects are being
studied as part of the SEL investigations [BaiSl, Bas77]. Studies of changes
made to the software as it is being developed constitute one part of those
investigations.

Typical projects studied by the SEL are medium size FORTRAN programs that
compute the position (known as attitude) of unmanned spacecraft, based on data
obtained from sensors on board the spacecraft. Attitude solutions are
displayed to the user of the program interactively on CRT terminals. Because
the basic functions of these attitude determination programs tend to change
slowly with time, large amounts of design and sometimes code are often re-used
from one program to the next. The programs range in size from about 20,000 to
about 120,000 lines of source code. They include subsystems to perform such
functions as reading and decoding spacecraft telemetry data, filtering sensor
data, computing attitude solutions based on the sensor data, and providing an
(interactive) interface to the user.

Development is done by contract in a production environment, and is often
separated into two distinct stages. The first stage is a high-level design
stage. The system to be developed is organized into subsystems, and then
further subdivided. For the purposes of the SEL, each named entity in the
system is called a component. The result of the first stage is a tree chart
showing the functional structure of the subsystem, in some cases down to the
subroutine level, a system functional specification describing, in English,
the functional structure of the system, and decisions as to what software may
be reused from other systems.

The second stage consists of completing the development of the system.
Different components are assigned to (teams of) programmers, who write, debug,
test, and integrate the software. Before delivery, the software must pass a
formal acceptance test. On some projects, programmers produce no intermediate
specifications between the functional specifications produced as part of the
first stage and the code. Some projects produce pseudo-code specifications
for individual subroutines before coding them in FORTRAN. During the period
of time that the SEL has been in existence, a structured FORTRAN preprocessor
has come into general use.

In distinction to the ARF developers, NASA is not concerned with
experimenting with new software engineering techniques. It is concerned with
introducing improved techniques into its software development process.

D.Weiss
NRL
4 of 25

Nonetheless, the principal design goal of the major SEL projects is to produce
a working system in time for a spacecraft launch. Results from SEL studies of
three different NASA projects, denoted SELl, SEL2, and SEL3, are included here,

Project

SELl
SEL2
SEL3
ARF

Number of
Changes

281
229
760

Number of
Modifications

101
110
453

Number of
Errors

180
119
307
143

Table 1 Overview of Data Collected

Project

SELl
SEL2
SEL3
ARF

Project

SELl
SEL2
SEL3
ARF

Effort Number of Lines of
(Months) Developers Code (K)

79.0
39.6
98.7
44.3

5
4
7
9

50.9
75.4
85.4
21.8

Dev. Lines
of Code (K)

46.5
31.1
78.6
21.8

Number of
Components

502
490
639
253

Table 2 Summary of Project Information

Errors Per K Lines
Of Developed Code

3.9
3.8
3.9
6.6

Errors Resulting
From Change
(As Percentage
Of NonClericals)

5
14
12
13

Repeated Error Ratio
(Average Number
Of Corrections
Per Error)

1.02
1.08*
1.05
1.007

* Upper bound. Exact number of repeated errors for SEL2 is unknown.
By conservative means, the ratio could be estimated as 1.04.

Table 3 Measures of Erroneous Change

D. Weiss
NRL
5 of 25

Results

The results presented here are derived from analyses of several different
data parameters and distributions. Table 3 shows error density, errors
resulting from change, and repeated error ratio for each project. These
parameters indicate that for all projects most changes were made correctly on
the first attempt.

Figures 1 and 2 are an overview of the change distributions for the SEL
projects (recall that data' on modifications is not available for the ARF
project). Figure 3 shows sources of modifications, i.e. reasons for modifying
the software, and figure 4 shows sources of nonclerical errors. Although
there were a significant number of requirements changes for two of the SEL
projects, none of the projects show a significant number of errors resulting
from incorrect or misunderstood requirements.

For all projects, the major source of errors was the design and
implementation of single components. (For these projects, a single component
is nearly always a FORTRAN subroutine or block data.) Relatively few errors
were the result of misunderstandings of requirements, specifications,
programming language or compiler,'or software or hardware environment.
Aspects o£ the design involving more than one component was also not a major
source of errors. Figure 5 shows a continuation of the same pattern. For
most projects, interfaces were not a significant source of errors.

A further categorization of design and implementations errors, including
both single and multi-component design errors is shown in figure 6. The
pattern for the SEL and ARF projects is quite different here; relatively few
ARF errors involved the use (including definition, representation, and access)
of data. For the SEL projects, data errors were a significant fraction of
design and implementation errors.

A direct measure of ease of error correction is shown in figure 7. For
all projects, the overwhelming majority of errors took less than a day of
effort to correct. Indeed, most error corrections took an hour or less of
effort.

Figure 8 is a measure of locality of errors with respect to project
components. Only components that required at least one error correction (one
fix) are represented. The majority of such components required no more than
one correction. -For all projects, 80% or more of such components were
corrected at most three times.

Locality of errors with respect to project subsystem (project module for
the ARF), is shown in figure 9. The distributions here show the reverse
pattern of those in figure 8, i.e. most corrections are clustered in a few
subsystems (modules).

Conclusions

The ARF and SEL projects involved different applications and were
developed in different environments, using different methdologies, people with
different backgrounds, and different computer systems. Despite these
differences there are a number of similarities between the two, as listed in
the following.

D.Weiss
NRL
6 of 25

1. There is a common pattern to the sources of error
distributions. The principle error source is in the design and
implementation of single routines.. Requirements, specifications
and interface misunderstandings are all minor sources of errors.

2. Few errors are the result of changes, few errors require more
than one attempt at correction, and few error corrections result
in other errors.

3. Relatively few errors take more than a day to correct.

These similarities may be explained by different factors in the different
environments. The SEL projects may be viewed as redevelopments. Much of the
same design and some of the same code is reused from one project to the next.
As a result of experience with the application, the changes most likely to
occur from one project to the next have been identified by the designers. The
systems are now designed so that these changes are easy to make. Confirmation
of this explanation was provided by one of the primary system designers in
discussions held after the data were analyzed.

In the ARF environment, the explicit use of techniques to identify and
design for potential changes is a likely contributing factor to the
similarities in the distributions.

Common factors to both the SEL and ARF projects were the stability of the
hardware and software supporting the development and the familiarity of the
programmers with the language they were using.

The most striking difference between the ARF and SEL projects is in the
proportion of intended use to data errors. The ARF project has a considerably
smaller proportion of data errors than the SEL projects. One reason for this
may be the conscious attempt of the ARF developers to apply abstract data
typing and strong typing in their design.

Acknowledgements

Support for a research project involving data collection in a production
environment must come from many sources. These sources include project
management, the programmers supplying the data, those maintaining the data
base (in both paper and computerized form), those assisting in data analysis,
and those providing technical review and guidance. A few of the people
providing such support were Frank McGarry, Drs. Victor Basili, David Parnas,
John Shore, and Gerald Page, Honey Elovitz, Alan Parker, Jean Grondalski, Sam
DePriest, Joanne, Shana, and Joshua Weiss, and Kathryn Kragh.

D.Weiss
NRL
7 of 25

References

[BaiSl] J. Bailey and V. Basili, "A Meta-Model For Software Development
Resource Expenditures," Proc. Fifth Int. Conf. Software Eng., pp.
107-116, 1981

[Bas77] V. Basili, M. Zelkowitz, F. McGarry, et al., The Software Engineering
Laboratory, University of Maryland Technical Report TR-535, May 1977

[BasSl] V. Basili and D. Weiss, "Evaluation of a Software Requirements
Document By Analysis of Change Data," Proc. Fifth Int. Conf. Software
Eng., pp. 314-323, 1981

[Bel71] C. Bell and A. Newell, Computer Structures: Readings and Examples,
McGraw-Hill, New York, 1971

[Elo79] H. Elovitz, "An Experiment In Software Engineering: The Architecture
Research Facility As A Case Study, Proc. Fourth Int. Conf. Software
Eng., pp. 145-152, 1979

[Par72a] D. L. Parnas, "A Technique For Software Module Specification With
Examples," Comm. ACM, vol. 15 no. 5, May, 1972, pp. 330-336

[Par76] D. L. Parnas, "On the Design and Development of Program Families,"
IEEE Trans. Software Eng., vol. SE-2 no. 1, pp. 1-9, 1976

[Wei79] D. Weiss, "Evaluating Software Development by Error Analysis: The
Data from the Architecture Research Facility," J. Systems and
Software, vol. 1, pp. 57-70, 1979

[WeiSl] D. Weiss, "Evaluating Software Development By Analysis Of Change
Data," Ph.D. Thesis, University of Maryland, 1981

D. Weiss
NRL
8 of 25

THE VIEWGRAPH MATERIALS
for the

D. WEISS PRESENTATION FOLLOW

D.Weiss
NRL
9 of 25

PURPOSE OF RESEARCH

* FIND A WAY OF EVALUATING SOFTWARE DEVELOPMENT METHODOLOGIES

* LEARN ABOUT THE SOFTWARE DEVELOPMENT PROCESS

* LEARN ABOUT MEASURING THE SOFTWARE DEVELOPMENT PROCESS

APPROACH

* STUDY CHANGES USING GOAL-DIRECTED DATA COLLECTION

D. Weiss
NRL
10 of 25

RESEARCH METHODOLOGY DEVELOPED

* ESTABLISH GOALS

EXAMPLE: EVALUATE THE DIFFICULTY OF CHANGING SOFTWARE

* DEFINE QUESTIONS OF INTEREST

EXAMPLES: IS IT CLEAR WHERE A CHANGE HAS TO BE MADE?

ARE CHANGES CONFINED TO SINGLE MODULES?

WHAT WAS THE AVERAGE EFFORT INVOLVED IN MAKING A
CHANGE?

* DESIGN DATA COLLECTION FORM

* COLLECT AND VALIDATE DATA CONCURRENTLY WITH DEVELOPMENT

* ANALYZE DATA

D.Weiss
NRL
11 of 25

TYPES OF CHANGES

* DEF: A CHANGE IS AN ALTERATION TO (BASELINED) DESIGN, CODE, OR

DOCUMENTATION.

* DEF: AN ERROR IS A DISCREPANCY BETWEEN" A. SPECIFICATION AND ITS

IMPLEMENTATION.

* DEF: A MODIFICATION IS A CHANGE MADE FOR AN* REASON OTHER THAN TO

CORRECT AN ERROR.

* CHANGES = MODIFICATIONS + ERROR CORRECTIONS

D. Weiss
NRL
12 of 25

SUBCATEGORIES OF CHANGES

* MODIFICATIONS

IMPLEMENTATION OF REQUIREMENTS CHANGE

OPTIMIZATIONS

IMPROVEMENTS OF USER SERVICES

IMPROVEMENT OF CLARITY, MAINTAINABILITY, OR DOCUMENTATION

ADAPTATION TO ENVIRONMENT CHANGE.

* ERROR CORRECTIONS

CLERICAL ERRORS

NON-CLERICAL ERRORS

REQUIREMENTS INCORRECT OR MISINTERPRETED

SPECIFICATIONS INCORRECT OR MISINTERPRETED

DESIGN ERROR INVOLVING SEVERAL COMPONENTS

ERROR IN DESIGN/IMPLEMENTATION OF A SINGLE COMPONENT

ERROR IN USE OF PROGRAMMING LANG OR COMPILER

MISUNDERSTANDING OF ENVIRONMENT

D. Weiss
NRL
13of25

Project

SEL1
SEL2
SEL3
ARF
A-7

Number of
Changes

281
229
760

88

Number of
Modifications

101
110
453

Number of
Errors

180
119
307
143
79

Table 5.4a Overview of Data Collected

Effort

Project

SEL1
SEL2
SEL3
ARF
A-7

79.0
39.6
98.7
44.3

Number of
Developers

5
4
7
9

Lines of
Code (K)

50.9
75.4
85.4
21.8

Dev. Lines
of Code (K)

46.5
31.1
78.6
21.8

Number of
Components

502
490
639
253

Table 5.4b Summary of Project Information

D. Weiss
NRL
14 of 25

Changes Per K Lines
Of Developed Code

Errors Per K Lines Error To Mod Ratio
Of Developed Code (NonClericals Only)

Project

SEL1

SEL2

SEL3

ARF

6.0

7.4

9.7

3.9

3.8

3.9

6.6

1.3

.92

.54

Table 5.5 Change and Error Densities

Project

SEL1

SEL2

SEL3

ARF

Erroneous Change Rate Errors Resulting Repeated Error Ratio
(Ratio Of Changes From Change (Average Number
Resulting In Errors (As Percentage
To All Changes) Of NonClericals)

Of Corrections
Per Error)

.025

..061

.041

5

14

12

13

1.02

1.08*

1.05

1.007

* Upper bound. Exact number of repeated errors for SEL2 is unknown.
By conservative means, the ratio could be estimated as 1.04.

Table 5.6 Measures of Erroneous Change

D.Weiss
NRL
15 of 25

Project

SEL2

SEL1

SEL3

ARF

4

5

7

9

Number Of People Errors Per Person

25

26

44

10

Table 5.7 Errors Per Person By Number Of People

Effort
(People-Months)

Project

SEL2

ARF

SEL1

SEL3

39.6

44.3

79.0

98.7

Errors Per
Person-Month

2.4

2.1

1.7

3.1

Table 5.8 Errors Per Effort By Effort

Changes Per
Person-Month

5.8

3.6

7.7

D. Weiss
NRL
16 of 25

0
0

\
I

co
y,

_U
U

J

O

t

IenCO

6

CMU
J

CO

•oo

$
o

o

o
CM

«-

<
_

l-l
O

K
Z

O
u

ic
o

Q
.U

J
C

C
U

U
J
Z

I-
O

u
.

Mcta6

(OCO

to £

y
liJ

•C
52

JJ O

•so

CM

03enCO

O

I
(

I
I

I
I

I

CO
«

•
2

o

0
0

«
 0

o
 fc

C
 111

CO

6

CO_
l

CO

•oo

o

o

p

o

<
 -I

o

o

o

o

CO

CM

t—

O
K

Z

O
iu

 c
o

O
u
.

O

O

O

O

O
O

O

O

<
-I

_
l

O
 X

 <
 2

 O
 0

1
 co

(L
uicruuizt-

ou.

D
.W

eiss
N

R
L

17 of 25

0
0

C
M

in

Sl
i

o
 t

03Q
.

I(O
£O

O
J

V
)

§
o

o

in

r̂
o

o

o

CM

i-

L
u

X
C

J
-l

C
J
-I U

) D
C
 _

 O
 <

-J c/)

O
u
-

•o<D
T

3
_3OXU

JC
/3

O^w

in

CO

fe •"
J? o
o
 t

tnCO

g,o

-oo
in(O

I
I

I
I

I

Siio fc

0
)

Q
.

03
£O

u6
0
cCO

S(N6
0

•oo

S
o

o

in

•*
o

o

o

C
M

«
-

O
O

O
O

O
r»

<
o
 in

*

c
o

O
O

O
CM

t-
L

U
X

O
-

1
O

-J
U

J
E

C
_

O
<

l-
|c

«

O
. Q

J £
E

 O
 1

1
1
 Z

 I-
O

u
.

O
X

O
C

Z
O

U
J
C

/}

U
J X

 O
 -1

O

—
 IU

J O
C
 —

 O
<

-K
/5

Q
.Q

J
O

C
O

IU
Z

I-
O

u
.

O
K

Z
C

3
U

J
C

O

D
. W

eiss
N

R
L

18 of 25

O
1

O
>

CM

o-Sien

IQ.
*

'S"DC

H

3

o>
uj

g"
C

O

<J

cO
)

cu•D

OoC
T

3.n

£5O0)re"Ere
£0)C

in£3iZo

V

n
*

"*
0
)

2

<
U

O
)

0
5

O

)

-
 r

e
o

i_
.o.0

reoc01£'5C
T

0)0)ocre

re

o

re

a
o

*5

o

£
(/»

</s
w>

re

O

O

O
 C

"c

S

S

S
i

w

*

I

£

§

1

T
3

T
J

'5
-^

c
O

O

O

 >

re

O
 o

'^'^o
 £

o
o

o
o

g
o

o
o

i**
<

o
 in

t

fi
o>

j i-

D
.U

J
C

C
C

J
U

J
2

I-
O

u
.

coo£reV
)

OIo(A0)

O

0)
V

D

Q
LLI
Q

.

co
cr

-*
0)

C
DC

D

onCOT
3OS3Oen

COCM

CM(D

I
I

I
I

I
I

U
J

Q
.C111en>

CM

0)Q
.

CO

to

in

CM

I
I

6O
)

^30)
OencrvDC

I§>

COCO

rn0
0

o

o

o

r^
to

in
o

o

o
co

CM

«-
o

o

o

o

o

o
ID

t̂

C
O

C

M

r-

O
.U

J
C

C
U

L
U

Z
H

O

u
.

Q
. IU

 C
C

 O
 U

J 2

I-

O
u
-

S
O

Q
c

/5

D
.W

eiss
N

R
L

19 of 25

00

CO

I
I

I
I

5cLUO
J

T
O

g
,«

 o
.

m

SJ E
 o

*°

Q
W

O

g
.

»
2

&

^
C

/)
—

w

^

CO

co

00

o

I
I

I

O
)

(0,
•B

»
E

<u.E o
Q

C
O

U

ffl

O0)Q
.

O

O
00

I*.

o

o

o

o

o

o

LO

^

C
O

 C
M

 t-
O

O
O

O
O

O
O

O
O

C
L

U
J

C
C

O
L

U
Z

I-
O

L
L

— ocoz.

0
°

.
03

6>cLU1-"5
.

<£>

1̂

*
t

1
1

1
1

1
1

1
1

_
lH
P

s
fl

Q
C

O
O

§>-i^
c
fl^

 C
o> =

 o
Q

S
O

_

0

C

w

£
0

%

o-0)
DC

-3
E

i!^
1

i

>£1=.

i
J

LU"o>.

O
O

O
O

O
O

O
O

O
O

O
r

x
t

O
L

O
^

O
O

c
M

'
-

CO

C
S

~

£

in

CSJ

If)

(£>

I
I

O
)

T
O

^

<
!)

Q

.
'i I

0
3

.E

O

°

Q
W

O

O

•lit "

3OC
/33£0

iZ

oc SS

a. ai cc o LU 21-
O

u.

O
O

O
O

O
O

O
O

O

Z
O

Z
O

-J
L

U
C

C
O

<
-lc

/5

O
u
.D

.W
eiss

N
R

L
20 of 25

30
27

N
P O
E N
R C
C L
E
N
T I

C
O A
F L

S

20

E
R

10

13

10 10

SEL1 SEL2 SEL3

PROJECT

ARF

Figure 5.7 Interface Errors.

D. Weiss
NRL
21 of 25

O

O

O

r~
CD in

I
I

I

o>

•o<uis

oI
LUCO

o

o

o

o
<*

C
O

C

M

«-

Z
O

Z
O

-lu
J
C

C
_

o
<

-ic
/>

O
.LU

G
C O

u
J
Z

h
-

O
u

.

tqino>.0
)

™
LL

C
O

2 |

S

§

oli(0

0
}

o
oj %

Jltsg
1.1

I
I

I
I

I

o>

cc<

•o o>
c
 «

cuD

S
o

o

o

o

o

o

tn
^

co
C

M
 i-

Z
O

Z
O

-
I
U

J
(
X

_
O

<
-
lM

o. LU a u LU 2 H
-

O
u.

€
.£

I
I

I

_ch
.

o

?.si
-fo 2

D•o

oQ

Q
)

Q
.

I
I

_
L

O

O

O

O

O

O

O

O
r^

to
in

T
t

co
C

M

t-

C/3

oWc_o-4—
»

03
•4—

»

Ca.coo30
0

o2L
co

•g"gs

O
O

O
O

O
O

O
-

Q
. U

J C
C

 U
 U

J Z

I-

O
u
-

Q.UJO: U
U

JZ
H

O

u-

D
. W

eiss
N

R
L

22 of 25

toco

LO

1
1

1

re
"BO
re r—

0)O
)

reCD

3

Q
*:

oLUCMLUV
)

C
M

C
M

o

o

CO

^^
o

o

o

o

o

o

LO

"*
C

O

C
M

t-

~
 £

 >
±

i 2
 ro

^ 2 >
5

°"-

c
 £

o
o

o
o

o
o

o
o

o
oto

0. U
J CC

 O
 LU

 2
 I-

O
u.

O
-U

JC
C

U
u

iZ
I—

O

u
-

£LU

2o'C™"oCo6
0

CC
O

U

CM

LO

I
I

I

CO

re
 r-

X
.
-O

euenre

6en
'35cv
OO£LULU

C
O

CM

0
0

O
O

O
O

O
O

O
O

O

Z
O

Z
U

-
IIU

C
C

U
<

_
IO

O

C
L

L
L

lC
C

O
m

Z
I-

O
U

.

ocDE

>
EH <o

0)O
)

(O

6
*-

5LUC
O

LUV
)

wotoon

o

o

o

o

O
O

O
O

O
^

-
c

o
c

M
t
-

O
u

.

D
.W

eiss
N

R
L

23 of 25

CNJ

0
0C
M[

oo

CMC
N

O
)

in
sXIt

™
o

-i
i_

H

I
<v

v)

13Z
COCM

o
o

o
o

o
o

o
o

r>
to

if)
**

co
C

M
 «-

u

X
u

iD

O
O

S
o

-
O

Q
.U

JC
C
 O

L
U

2
H

O

U
-

(£>

CD
§E3

CM

O

O

O

O
r*«

<o
in

^-
Oro

o
o

o
CM

«-

U
- —

 X
U

J
Q

O

O
2

o
.O

2
tiJ

2
l-

to

C
LU

J C
C

O
U

J
H

 h
-

O
u
.

onXEco

m

a>
co

CO

CM

O(O

enoo(Oin

V
)

0>

"£
«

o

_
j

^-
u
 i

5

^5

3

COCM

O
O

O
O

O

O
O

O
r̂

(o

in

*t

co

C
M

 «-

u

--

X
u

jQ

3C
Tu.

U
-

in300

O
.U

IC
C

O
U

J
2

I-
O

U
.

Q
.L

U
D

C
O

L
U

2
I-

O
U

.

D
.W

eiss
N

R
L

24 of 25

CONCLUSIONS ABOUT SOFTWARE DEVELOPMENT COMMON TO NRL AND NASA/GSFC

* PRINCIPAL ERROR SOURCE IS DESIGN AND IMPLEMENTATION OF SINGLE ROUTINES

REQUIREMENTS, SPECIFICATIONS, AND INTERFACE MISUNDERSTANDINGS ARE

MINOR SOURCES OF ERRORS.

* FEW ERRORS ARE THE RESULT OF CHANGES, FEW ERRORS REQUIRE MORE THAN

ONE ATTEMPT AT CORRECTION, AND FEW ERROR CORRECTIONS RESULT IN OTHER

ERRORS.

* RELATIVELY FEW ERRORS TAKE MORE THAN A DAY TO CORRECT.

DIFFERENCES BETWEEN ARF AND SEL SOFTWARE DEVELOPMENT

* THE PROPORTION OF ARF ERRORS INVOLVING DATA IS CONSIDERABLY SMALLER

THAN THE CORRESPONDING PROPORTION FOR SEL ERRORS

D.Weiss
NRL
25 of 25

