53,868 research outputs found
Simulating Organogenesis in COMSOL: Tissue Mechanics
During growth, tissue expands and deforms. Given its elastic properties,
stresses emerge in an expanding and deforming tissue. Cell rearrangements can
dissipate these stresses and numerous experiments confirm the viscoelastic
properties of tissues [1]-[4]. On long time scales, as characteristic for many
developmental processes, tissue is therefore typically represented as a liquid,
viscous material and is then described by the Stokes equation [5]-[7]. On short
time scales, however, tissues have mainly elastic properties. In discrete
cell-based tissue models, the elastic tissue properties are realized by springs
between cell vertices [8], [9]. In this article, we adopt a macroscale
perspective of tissue and consider it as homogeneous material. Therefore, we
may use the "Structural Mechanics" module in COMSOL Multiphysics in order to
model the viscoelastic behavior of tissue. Concretely, we consider two
examples: first, we aim at numerically reproducing published [10] analytical
results for the sea urchin blastula. Afterwards, we numerically solve a
continuum mechanics model for the compression and relaxation experiments
presented in [4]
Searching for Globally Optimal Functional Forms for Inter-Atomic Potentials Using Parallel Tempering and Genetic Programming
We develop a Genetic Programming-based methodology that enables discovery of
novel functional forms for classical inter-atomic force-fields, used in
molecular dynamics simulations. Unlike previous efforts in the field, that fit
only the parameters to the fixed functional forms, we instead use a novel
algorithm to search the space of many possible functional forms. While a
follow-on practical procedure will use experimental and {\it ab inito} data to
find an optimal functional form for a forcefield, we first validate the
approach using a manufactured solution. This validation has the advantage of a
well-defined metric of success. We manufactured a training set of atomic
coordinate data with an associated set of global energies using the well-known
Lennard-Jones inter-atomic potential. We performed an automatic functional form
fitting procedure starting with a population of random functions, using a
genetic programming functional formulation, and a parallel tempering
Metropolis-based optimization algorithm. Our massively-parallel method
independently discovered the Lennard-Jones function after searching for several
hours on 100 processors and covering a miniscule portion of the configuration
space. We find that the method is suitable for unsupervised discovery of
functional forms for inter-atomic potentials/force-fields. We also find that
our parallel tempering Metropolis-based approach significantly improves the
optimization convergence time, and takes good advantage of the parallel cluster
architecture
Low and high intensity velocity selective coherent population trapping in a two-level system
An experimental investigation is made of sub-recoil cooling by velocity
selective coherent population trapping in a two-level system in Sr. The
experiment is carried out using the narrow linewidth intercombination line at
689 nm. Here, the ratio between the recoil shift and the linewidth is as high
as 0.64. We show that, on top of a broader momentum profile, subrecoil features
develop, whose amplitude is strongly dependent on the detuning from resonance.
We attribute this structure to a velocity selective coherent population
trapping mechanism. We also show that the population trapping phenomenon leads
to complex momentum profiles in the case of highly saturated transitions,
displaying a multitude of subrecoil features at integer multiples of the recoil
momentum.Comment: 6 pages and 7 figure
Using stock returns to identify government spending shocks
This paper explores a new approach to identifying government spending shocks which avoids many of the shortcomings of existing approaches. The new approach is to identify government spending shocks with statistical innovations to the accumulated excess returns of large US military contractors. This strategy is used to estimate the dynamic responses of output, hours, consumption and real wages to a government spending shock. We find that positive government spending shocks are associated with increases in output, hours, and consumption. Real wages initially decline after a government spending shock and then rise after a year. We estimate the government spending multiplier associated with increases in military spending to be about 0.6 over a horizon of 5 years.Fiscal policy ; Government spending policy ; Stocks
Network ST radar and related measurements at Pennsylvania State University
Mesoscale meteorological measurements, analysis and prediction are some of the principal areas of research in the Department of Meteorology at Penn State. In anticipation of a staged turn-on of the three systems during the Summer and Fall of 1984, the nonconstruction-related efforts have focused on the software development necessary to allow essentially immediate use of network data. A 16-bit microcomputer has been programmed to serve as the network controller, communications interface and, at least for real-time purposes, the operational display system. Insofar as possible we have in this task built upon our substantial accumulated experience in working with the processing and display of Doppler sodar system signals. Once the radar-derived wind and turbulence profiles are communicated to the various interconnected Departmental computers they become just one component of a comprehensive data base which can be applied to a diverse set of ongoing basic and operational research programs
The twin paradox in compact spaces
Twins travelling at constant relative velocity will each see the other's time
dilate leading to the apparent paradox that each twin believes the other ages
more slowly. In a finite space, the twins can both be on inertial, periodic
orbits so that they have the opportunity to compare their ages when their paths
cross. As we show, they will agree on their respective ages and avoid the
paradox. The resolution relies on the selection of a preferred frame singled
out by the topology of the space.Comment: to be published in PRA, 3 page
Fractal Markets Hypothesis and the Global Financial Crisis: Scaling, Investment Horizons and Liquidity
We investigate whether fractal markets hypothesis and its focus on liquidity
and invest- ment horizons give reasonable predictions about dynamics of the
financial markets during the turbulences such as the Global Financial Crisis of
late 2000s. Compared to the mainstream efficient markets hypothesis, fractal
markets hypothesis considers financial markets as com- plex systems consisting
of many heterogenous agents, which are distinguishable mainly with respect to
their investment horizon. In the paper, several novel measures of trading
activity at different investment horizons are introduced through scaling of
variance of the underlying processes. On the three most liquid US indices -
DJI, NASDAQ and S&P500 - we show that predictions of fractal markets hypothesis
actually fit the observed behavior quite well.Comment: 11 pages, 3 figure
Electroproduction of Soft Pions at Large Momentum Transfers
We consider pion electroproduction on a proton target close to threshold for
Q^2 in the region 1-10 GeV^2. The momentum transfer dependence of the S-wave
multipoles at threshold, E_{0+} and L_{0+}, is calculated using light-cone sum
rules.Comment: 8 pages, 3 figures; Invited talk at the workshop on Exclusive
Reactions at High Momentum Transfer, 21-24 May 2007, Newport News, Virginia,
U.S.A. and International Conference on hadron Physics TROIA'07, 30 Aug. - 3
Sept. 2007, Canakkale, Turke
Classical and quantum anisotropic Heisenberg antiferromagnets
We study classical and quantum Heisenberg antiferromagnets with exchange
anisotropy of XXZ-type and crystal field single-ion terms of quadratic and
cubic form in a field. The magnets display a variety of phases, including the
spin-flop (or, in the quantum case, spin-liquid) and biconical (corresponding,
in the quantum lattice gas description, to supersolid) phases. Applying
ground-state considerations, Monte Carlo and density matrix renormalization
group methods, the impact of quantum effects and lattice dimension is analysed.
Interesting critical and multicritical behaviour may occur at quantum and
thermal phase transitions.Comment: 13 pages, 14 figures, conferenc
- …
