2,575 research outputs found
Cosmologies with Null Singularities and their Gauge Theory Duals
We investigate backgrounds of Type IIB string theory with null singularities
and their duals proposed in hep-th/0602107. The dual theory is a deformed N=4
Yang-Mills theory in 3+1 dimensions with couplings dependent on a light-like
direction. We concentrate on backgrounds which become AdS_5 x S^5 at early and
late times and where the string coupling is bounded, vanishing at the
singularity. Our main conclusion is that in these cases the dual gauge theory
is nonsingular. We show this by arguing that there exists a complete set of
gauge invariant observables in the dual gauge theory whose correlation
functions are nonsingular at all times. The two-point correlator for some
operators calculated in the gauge theory does not agree with the result from
the bulk supergravity solution. However, the bulk calculation is invalid near
the singularity where corrections to the supergravity approximation become
important. We also obtain pp-waves which are suitable Penrose limits of this
general class of solutions, and construct the Matrix Membrane theory which
describes these pp-wave backgrounds.Comment: 43 pages REVTeX and AMSLaTeX. v2: references adde
Modern Michelson-Morley experiment using cryogenic optical resonators
We report on a new test of Lorentz invariance performed by comparing the
resonance frequencies of two orthogonal cryogenic optical resonators subject to
Earth's rotation over 1 year. For a possible anisotropy of the speed of light
c, we obtain 2.6 +/- 1.7 parts in 10^15. Within the Robertson-Mansouri-Sexl
test theory, this implies an isotropy violation parameter beta - delta - 1/2 of
-2.2 +/- 1.5 parts in 10^9, about three times lower than the best previous
result. Within the general extension of the standard model of particle physics,
we extract limits on 7 parameters at accuracies down to a part in 10^15,
improving the best previous result by about two orders of magnitude
Relativity tests by complementary rotating Michelson-Morley experiments
We report Relativity tests based on data from two simultaneous
Michelson-Morley experiments, spanning a period of more than one year. Both
were actively rotated on turntables. One (in Berlin, Germany) uses optical
Fabry-Perot resonators made of fused silica; the other (in Perth, Australia)
uses microwave whispering-gallery sapphire resonators. Within the standard
model extension, we obtain simultaneous limits on Lorentz violation for
electrons (5 coefficients) and photons (8) at levels down to ,
improved by factors between 3 and 50 compared to previous work.Comment: 5 pages revtex, 2 figure
Arago (1810): the first experimental result against the ether
95 years before Special Relativity was born, Arago attempted to detect the
absolute motion of the Earth by measuring the deflection of starlight passing
through a prism fixed to the Earth. The null result of this experiment gave
rise to the Fresnel's hypothesis of an ether partly dragged by a moving
substance. In the context of Einstein's Relativity, the sole frame which is
privileged in Arago's experiment is the proper frame of the prism, and the null
result only says that Snell's law is valid in that frame. We revisit the
history of this premature first evidence against the ether theory and calculate
the Fresnel's dragging coefficient by applying the Huygens' construction in the
frame of the prism. We expose the dissimilar treatment received by the ray and
the wave front as an unavoidable consequence of the classical notions of space
and time.Comment: 16 pages. To appear in European Journal of Physic
Bounds on Lorentz and CPT Violation from the Earth-Ionosphere Cavity
Electromagnetic resonant cavities form the basis of many tests of Lorentz
invariance involving photons. The effects of some forms of Lorentz violation
scale with cavity size. We investigate possible signals of violations in the
naturally occurring resonances formed in the Earth-ionosphere cavity.
Comparison with observed resonances places the first terrestrial constraints on
coefficients associated with dimension-three Lorentz-violating operators at the
level of 10^{-20} GeV.Comment: 8 pages REVTe
Electrodynamics with Lorentz-violating operators of arbitrary dimension
The behavior of photons in the presence of Lorentz and CPT violation is
studied. Allowing for operators of arbitrary mass dimension, we classify all
gauge-invariant Lorentz- and CPT-violating terms in the quadratic Lagrange
density associated with the effective photon propagator. The covariant
dispersion relation is obtained, and conditions for birefringence are
discussed. We provide a complete characterization of the coefficients for
Lorentz violation for all mass dimensions via a decomposition using
spin-weighted spherical harmonics. The resulting nine independent sets of
spherical coefficients control birefringence, dispersion, and anisotropy. We
discuss the restriction of the general theory to various special models,
including among others the minimal Standard-Model Extension, the isotropic
limit, the case of vacuum propagation, the nonbirefringent limit, and the
vacuum-orthogonal model. The transformation of the spherical coefficients for
Lorentz violation between the laboratory frame and the standard Sun-centered
frame is provided. We apply the results to various astrophysical observations
and laboratory experiments. Astrophysical searches of relevance include studies
of birefringence and of dispersion. We use polarimetric and dispersive data
from gamma-ray bursts to set constraints on coefficients for Lorentz violation
involving operators of dimensions four through nine, and we describe the mixing
of polarizations induced by Lorentz and CPT violation in the cosmic-microwave
background. Laboratory searches of interest include cavity experiments. We
present the theory for searches with cavities, derive the experiment-dependent
factors for coefficients in the vacuum-orthogonal model, and predict the
corresponding frequency shift for a circular-cylindrical cavity.Comment: 58 pages two-column REVTeX, accepted in Physical Review
Potentials for hyper-Kahler metrics with torsion
We prove that locally any hyper-K\"ahler metric with torsion admits an HKT
potential.Comment: 9 page
Dimensional Reduction without Extra Continuous Dimensions
We describe a novel approach to dimensional reduction in classical field
theory. Inspired by ideas from noncommutative geometry, we introduce extended
algebras of differential forms over space-time, generalized exterior
derivatives and generalized connections associated with the "geometry" of
space-times with discrete extra dimensions. We apply our formalism to theories
of gauge- and gravitational fields and find natural geometrical origins for an
axion- and a dilaton field, as well as a Higgs field.Comment: 23 page
Decoherence, fluctuations and Wigner function in neutron optics
We analyze the coherence properties of neutron wave packets, after they have
interacted with a phase shifter undergoing different kinds of statistical
fluctuations. We give a quantitative (and operational) definition of
decoherence and compare it to the standard deviation of the distribution of the
phase shifts. We find that in some cases the neutron ensemble is more coherent,
even though it has interacted with a wider (i.e. more disordered) distribution
of shifts. This feature is independent of the particular definition of
decoherence: this is shown by proposing and discussing an alternative
definition, based on the Wigner function, that displays a similar behavior. We
briefly discuss the notion of entropy of the shifts and find that, in general,
it does not correspond to that of decoherence of the neutron.Comment: 18 pages, 7 figure
A connection with parallel totally skew-symmetric torsion on a class of almost hypercomplex manifolds with Hermitian and anti-Hermitian metrics
The subject of investigations are the almost hypercomplex manifolds with
Hermitian and anti-Hermitian (Norden) metrics. A linear connection D is
introduced such that the structure of these manifolds is parallel with respect
to D and its torsion is totally skew-symmetric. The class of the nearly Kaehler
manifolds with respect to the first almost complex structure is of special
interest. It is proved that D has a D-parallel torsion and is weak if it is not
flat. Some curvature properties of these manifolds are studied.Comment: 18 page
- …