82 research outputs found

    Cloning and endogenous expression of a Eucalyptus grandis UDP-glucose dehydrogenase cDNA

    Get PDF
    UDP-glucose dehydrogenase (UGDH) catalyzes the oxidation of UDP-glucose (UDP-Glc) to UDP-glucuronate (UDP-GlcA), a key sugar nucleotide involved in the biosynthesis of plant cell wall polysaccharides. A full-length cDNA fragment coding for UGDH was cloned from the cambial region of 6-month-old E. grandis saplings by RT-PCR. The 1443-bp-ORF encodes a protein of 480 amino acids with a predicted molecular weight of 53 kDa. The recombinant protein expressed in Escherichia coli catalyzed the conversion of UDP-Glc to UDP-GlcA, confirming that the cloned cDNA encodes UGDH. The deduced amino acid sequence of the cDNA showed a high degree of identity with UGDH from several plant species. The Southern blot assay indicated that more than one copy of UGDH is present in Eucalyptus. These results were also confirmed by the proteomic analysis of the cambial region of 3- and 22-year-old E. grandis trees by 2-DE and LC-MS/MS, showing that at least two isoforms are present. The cloned gene is mainly expressed in roots, stem and bark of 6-month-old saplings, with a lower expression in leaves. High expression levels were also observed in the cambial region of 3- and 22-year-old trees. The results described in this paper provide a further view of the hemicellulose biosynthesis during wood formation in E. grandis

    Temporal shoreline series analysis using GNSS

    Get PDF
    In recent decades, Boa Viagem beach located in the city of Recife-PE and Piedade in Jaboatão dos Guararapes-PE (Brazil) has seen urbanization near the coastline causing changes in social, economic and morphological aspects, where coastal erosion problems are observed. This study uses GNSS (global navigation satellite system) shoreline monitoring approach, which is quicker, and provides continuously updatable data at cm-level accuracy to analyze and determine temporal positional shifts of the shoreline as well as annual average rates through EPR (end point rate). To achieve this, kinematic GNSS survey data for the years 2007, 2009, 2010 and 2012 were used. The results show sectorial trends over the years, with the highest annual retreat rate of 8.16 m /year occurring during the period 2007-2009. Variety of different patterns over the shoreline were also observed. These findings could be essential for decision making in coastal environments

    AXY3 encodes a α-xylosidase that impacts the structure and accessibility of the hemicellulose xyloglucan in Arabidopsis plant cell walls

    Get PDF
    Xyloglucan is the most abundant hemicellulose in the walls of dicots such as Arabidopsis. It is part of the load-bearing structure of a plant cell and its metabolism is thought to play a major role in cell elongation. However, the molecular mechanism by which xyloglucan carries out this and other functions in planta is not well understood. We performed a forward genetic screen utilizing xyloglucan oligosaccharide mass profiling on chemically mutagenized Arabidopsis seedlings to identify mutants with altered xyloglucan structures termed axy-mutants. One of the identified mutants, axy3.1, contains xyloglucan with a higher proportion of non-fucosylated xyloglucan subunits. Mapping revealed that axy3.1 contains a point mutation in XYLOSIDASE1 (XYL1) known to encode for an apoplastic glycoside hydrolase releasing xylosyl residues from xyloglucan oligosaccharides at the non-reducing end. The data support the hypothesis that AXY3/XYL1 is an essential component of the apoplastic xyloglucan degradation machinery and as a result of the lack of function in the various axy3-alleles leads not only to an altered xyloglucan structure but also a xyloglucan that is less tightly associated with other wall components. However, the plant can cope with the excess xyloglucan relatively well as the mutant does not display any visible growth or morphological phenotypes with the notable exception of shorter siliques and reduced fitness. Taken together, these results demonstrate that plant apoplastic hydrolases have a larger impact on wall polymer structure and function than previously thought

    Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress

    Get PDF
    To cope with the various environmental stresses resulting in reactive oxygen species (ROS) production plant metabolism is known to be altered specifically under different stresses. After overcoming the stress the metabolism should be reconfigured to recover basal operation however knowledge concerning how this is achieved is cursory. To investigate the metabolic recovery of roots following oxidative stress, changes in metabolite abundance and carbon flow were analysed. Arabidopsis roots were treated by menadione to elicit oxidative stress. Roots were fed with 13C labelled glucose and the redistribution of isotope was determined in order to study carbon flow. The label redistribution through many pathways such as glycolysis, the tricarboxylic acid (TCA) cycle and amino acid metabolism were reduced under oxidative stress. After menadione removal many of the stress-related changes reverted back to basal levels. Decreases in amounts of hexose phosphates, malate, 2-oxoglutarate, glutamate and aspartate were fully recovered or even increased to above the control level. However, some metabolites such as pentose phosphates and citrate did not recover but maintained their levels or even increased further. The alteration in label redistribution largely correlated with that in metabolite abundance. Glycolytic carbon flow reverted to the control level only 18 h after menadione removal although the TCA cycle and some amino acids such as aspartate and glutamate took longer to recover. Taken together, plant root metabolism was demonstrated to be able to overcome menadione-induced oxidative stress with the differential time period required by independent pathways suggestive of the involvement of pathway specific regulatory processes

    Synthesis of (1-->3), (1-->4)-beta-D-glucan in the Golgi apparatus of maize coleoptiles.

    No full text

    Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles

    No full text
    Cell wall polysaccharides in developing barley coleoptiles were examined using acetic acid–nitric acid extraction, alditol acetate and methylation analyses and enzymatic digestion. The coleoptile cell wall from imbibed grain was rich in pectic polysaccharides (30 mol%), arabinoxylan (25 mol%), cellulose (25 mol%) and xyloglucan (6 mol%), but contained only low levels of (1→3,1→4)-β-D-glucan (1 mol%). During 5 days of coleoptile growth, pectic polysaccharides decreased steadily to about 9 mol%, while (1→3,1→4)-β-D-glucan increased to 10 mol%. Following the cessation of growth of the coleoptiles at about 5 days, (1→3,1→4)-β-D-glucan content rapidly decreased to 1 mol%. The cellulose content of the walls remained at about 35–40 mol% throughout coleoptile growth. Similarly, arabinoxylan content remained essentially constant at 25–30 mol% during growth, although the ratio of substituted to unsubstituted 4-linked xylosyl units decreased from about 4:1 to 1:1. Xyloglucan content ranged from 6 mol% to 10 mol% and the oligosaccharide profile determined using a xyloglucanspecific endoglucanase and MALDI-TOF mass spectrometry indicated that the oligosaccharides XXGG and XXGGG were the principal components, with one and two acetyl groups, respectively, Thus, dramatic changes in wall composition were detected during the growth of barley coleoptiles, both with respect to the relative abundance of individual wall constituents and to the fine structure of the arabinoxylans.David M. Gibeaut, Markus Pauly, Antony Bacic and Geoffrey B. Finche
    corecore