19,105 research outputs found

    Subtraction method in the second random--phase approximation: first applications with a Skyrme energy functional

    Get PDF
    We make use of a subtraction procedure, introduced to overcome double--counting problems in beyond--mean--field theories, in the second random--phase--approximation (SRPA) for the first time. This procedure guarantees the stability of SRPA (so that all excitation energies are real). We show that the method fits perfectly into nuclear density--functional theory. We illustrate applications to the monopole and quadrupole response and to low--lying 0+0^+ and 2+2^+ states in the nucleus 16^{16}O. We show that the subtraction procedure leads to: (i) results that are weakly cutoff dependent; (ii) a considerable reduction of the SRPA downwards shift with respect to the random--phase approximation (RPA) spectra (systematically found in all previous applications). This implementation of the SRPA model will allow a reliable analysis of the effects of 2 particle--2 hole configurations (2p2h2p2h) on the excitation spectra of medium--mass and heavy nuclei.Comment: 1 tex, 16 figure

    Wake flowfields for Jovian probe

    Get PDF
    The wake flow field developed by the Galileo probe as it enters the Jovian atmosphere was modeled. The wake produced by the probe is highly energetic, yielding both convective and radiative heat inputs to the base of the probe. A component mathematical model for the inviscid near and far wake, the viscous near and far wake, and near wake recirculation zone was developed. Equilibrium thermodynamics were used for both the ablation and atmospheric species. Flow fields for three entry conditions were calculated. The near viscous wave was found to exhibit a variable axial pressure distribution with the neck pressure approximately three times the base pressure. Peak wake flow field temperatures were found to be in proportion to forebody post shock temperatures

    Storage capacity of correlated perceptrons

    Full text link
    We consider an ensemble of KK single-layer perceptrons exposed to random inputs and investigate the conditions under which the couplings of these perceptrons can be chosen such that prescribed correlations between the outputs occur. A general formalism is introduced using a multi-perceptron costfunction that allows to determine the maximal number of random inputs as a function of the desired values of the correlations. Replica-symmetric results for K=2K=2 and K=3K=3 are compared with properties of two-layer networks of tree-structure and fixed Boolean function between hidden units and output. The results show which correlations in the hidden layer of multi-layer neural networks are crucial for the value of the storage capacity.Comment: 16 pages, Latex2

    Correlations between hidden units in multilayer neural networks and replica symmetry breaking

    Full text link
    We consider feed-forward neural networks with one hidden layer, tree architecture and a fixed hidden-to-output Boolean function. Focusing on the saturation limit of the storage problem the influence of replica symmetry breaking on the distribution of local fields at the hidden units is investigated. These field distributions determine the probability for finding a specific activation pattern of the hidden units as well as the corresponding correlation coefficients and therefore quantify the division of labor among the hidden units. We find that although modifying the storage capacity and the distribution of local fields markedly replica symmetry breaking has only a minor effect on the correlation coefficients. Detailed numerical results are provided for the PARITY, COMMITTEE and AND machines with K=3 hidden units and nonoverlapping receptive fields.Comment: 9 pages, 3 figures, RevTex, accepted for publication in Phys. Rev.

    The effect of a cutoff on pushed and bistable fronts of the reaction diffusion equation

    Full text link
    We give an explicit formula for the change of speed of pushed and bistable fronts of the reaction diffusion equation when a small cutoff is applied at the unstable or metastable equilibrium point. The results are valid for arbitrary reaction terms and include the case of density dependent diffusion.Comment: 7 page

    Comparison of Hadronic Interaction Models at Auger Energies

    Get PDF
    The three hadronic interaction models DPMJET 2.55, QGSJET 01, and SIBYLL 2.1, implemented in the air shower simulation program CORSIKA, are compared in the energy range of interest for the Pierre Auger experiment. The model dependence of relevant quantities in individual hadronic interactions and air showers is investigated.Comment: Contribution to XII Int. Symp. on Very High Energy Cosmic Ray Interactions, 4 pages, 8 figure
    corecore