7,819 research outputs found

    Beam squint and Stokes V with off-axis feeds

    Full text link
    Radio telescopes with off-axis feeds, such as the (E)VLA, suffer from "beam squint" in which the two orthogonal circular polarizations sampled have different pointing centers on the sky. Its effects are weak near the beam center but become increasingly important towards the edge of the antenna power pattern where gains in the two polarizations at a given sky position are significantly different. This effect has limited VLA measurements of circular polarization (Stokes V) and introduced dynamic range limiting, wide-field artifacts in images made in Stokes I. We present an adaptation of the visibility-based deconvolution CLEAN method that can correct this defect "on the fly" while imaging, correcting as well the associated self-calibration. We present two examples of this technique using the procedure "Squint" within the Obit package which allows wide-field imaging in Stokes V and reduced artifacts in Stokes I. We discuss the residual errors in these examples as well as a scheme for future correction of some of these errors. This technique can be generalized to implement temporally- and spatially-variable corrections, such as pointing and cross-polarization leakage errors.Comment: 9 pages, 6 figures (five of them double), to appear in Astronomy & Astrophysics (accepted: May 9, 2008). High-resolution versions of the figures (gzipped, tar,gzipped) can be downloaded from http://www.cv.nrao.edu/~juson/technical/squint/squint_figures.g

    High Dynamic-Range Radio-Interferometric Images at 327 MHz

    Get PDF
    Radio astronomical imaging using aperture synthesis telescopes requires deconvolution of the point spread function as well as calibration of the instrumental characteristics (primary beam) and foreground (ionospheric/atmospheric) effects. These effects vary in time and also across the field of view, resulting in directionally-dependent (DD), time-varying gains. The primary beam will deviate from the theoretical estimate in real cases at levels that will limit the dynamic range of images if left uncorrected. Ionospheric electron density variations cause time and position variable refraction of sources. At low frequencies and sufficiently high dynamic range this will also defocus the images producing error patterns that vary with position and also with frequency due to the chromatic aberration of synthesis telescopes. Superposition of such residual sidelobes can lead to spurious spectral signals. Field-based ionospheric calibration as well as "peeling" calibration of strong sources leads to images with higher dynamic range and lower spurious signals but will be limited by sensitivity on the necessary short-time scales. The results are improved images although some artifacts remain.Comment: to appear in Comptes Rendus Physique (2011

    Radio Continuum Observations of the Galactic Center: Photoevaporative Proplyd-like Objects near Sgr A*

    Full text link
    We present radio images within 30'' of Sgr A* based on recent VLA observations at 34 GHz with 7.8 microJy sensitivity and resolution 88×46\sim88\times46 milliarcseconds (mas). We report 44 partially resolved compact sources clustered in two regions in the E arm of ionized gas that orbits Sgr A*. These sources have size scales ranging between ~50 and 200 mas (400 to 1600 AUs), and a bow-shock appearance facing the direction of Sgr A*. Unlike the bow-shock sources previously identified in the near-IR but associated with massive stars, these 34 GHz sources do not appear to have near-IR counterparts at 3.8 μ\mum. We interpret these sources as a candidate population of photoevaporative protoplanetary disks (proplyds) that are associated with newly formed low mass stars with mass loss rates ~10^{-7} - 10^{-6} solar mass per year and are located at the edge of a molecular cloud outlined by ionized gas. The disks are externally illuminated by strong Lyman continuum radiation from the ~100 OB and WR massive stars distributed within 10'' of Sgr A*. The presence of proplyds implies current in-situ star formation activity near Sgr A* and opens a window for the first time to study low mass star, planetary and brown dwarf formations near a supermassive black hole.Comment: 13 pages, 4 figures, ApJL (in press

    Radio Continuum Emission from the Magnetar SGR J1745-2900: Interaction with Gas Orbiting Sgr A*

    Full text link
    We present radio continuum light curves of the magnetar SGR J1745-2900 and Sgr A* obtained with multi-frequency, multi-epoch Very Large Array observations between 2012 and 2014. During this period, a powerful X-ray outburst from SGR J1745-2900 occurred on 2013-04-24. Enhanced radio emission is delayed with respect to the X-ray peak by about seven months. In addition, the flux density of the emission from the magnetar fluctuates by a factor of 2 to 4 at frequencies between 21 and 41 GHz and its spectral index varies erratically. Here we argue that the excess fluctuating emission from the magnetar arises from the interaction of a shock generated from the X-ray outburst with the orbiting ionized gas at the Galactic center. In this picture, variable synchrotron emission is produced by ram pressure variations due to inhomogeneities in the dense ionized medium of the Sgr A West bar. The pulsar with its high transverse velocity is moving through a highly blue-shifted ionized medium. This implies that the magnetar is at a projected distance of 0.1\sim0.1 pc from Sgr A* and that the orbiting ionized gas is partially or largely responsible for a large rotation measure detected toward the magnetar. Despite the variability of Sgr A* expected to be induced by the passage of the G2 cloud, monitoring data shows a constant flux density and spectral index during this periodComment: 12 pages, 3 figures, ApJL (in press

    ALMA and VLA Observations: Evidence for Ongoing Low-mass Star Formation near Sgr A*

    Get PDF
    Using the VLA, we recently detected a large number of protoplanetary disk (proplyd) candidates lying within a couple of light years of the massive black hole Sgr A*. The bow-shock appearance of proplyd candidates point toward the young massive stars located near Sgr A*. Similar to Orion proplyds, the strong UV radiation from the cluster of massive stars at the Galactic center is expected to photoevaporate and photoionize the circumstellar disks around young, low mass stars, thus allowing detection of the ionized outflows from the photoionized layer surrounding cool and dense gaseous disks. To confirm this picture, ALMA observations detect millimeter emission at 226 GHz from five proplyd candidates that had been detected at 44 and 34 GHz with the VLA. We present the derived disk masses for four sources as a function of the assumed dust temperature. The mass of protoplanetary disks from cool dust emission ranges between 0.03 -- 0.05 solar mass. These estimates are consistent with the disk masses found in star forming sites in the Galaxy. These measurements show the presence of on-going star formation with the implication that gas clouds can survive near Sgr A* and the relative importance of high vs low-mass star formation in the strong tidal and radiation fields of the Galactic center.Comment: 13 pages, 3 figures, MNRAS (in press

    The giant radio galaxy 8C0821+695 and its environment

    Get PDF
    We present new VLA and Effelsberg observations of the radio galaxy 8C0821+695. We have obtained detailed images in total intensity and polarization of this 2 Mpc sized giant. The magnetic field has a configuration predominantly parallel to the source main axis. We observe Faraday rotation at low frequencies, most probably produced by an ionized medium external to the radio source. The spectral index distribution is that typical of FR II radio galaxies, with spectral indices gradually steepening from the source extremes towards the core. Modeling the spectrum in the lobes using standard synchrotron loss models yields the spectral age of the source and the mean velocity of the jet-head with respect to the lobe material. The existence of a possible backflow in the lobe is considered to relate spectral with dynamical determinations of the age and the velocity with respect to the external medium. Through a very simple model, we obtain a physical characterization of the jets and the external medium in which the radio galaxy expands. The results in 8C0821+695 are consistent with a relativistic jet nourishing the lobes which expand in a hot, low density halo. We infer a deceleration of the source expansion velocity which we explain through a progressive increase in the hot-spot size.Comment: 11 pages; 8 figures; accepted in A&

    Algebraic treatment of PT\mathcal{PT}-symmetric coupled oscillators

    Get PDF
    The purpose of this paper is the discussion of a pair of coupled linear oscillators that has recently been proposed as a model of a system of two optical resonators. By means of an algebraic approach we show that the frequencies of the classical and quantum-mechanical interpretations of the optical phenomenon are exactly the same. Consequently, if the classical frequencies are real, then the quantum-mechanical eigenvalues are also real
    corecore