94,151 research outputs found
Understanding Legislator Experiences of Family-Friendly Working Practices in Political Institutions
This is a post-peer-review, pre-copy edit version of an article published in Politics and Gender. © 2015, Cambridge University Press
Freshwater fish and crayfish communities of the tributaries of the Margaret River
Tributaries and headwaters of major rivers are known to be important spawning and nursery habitats of freshwater endemic fishes in south-western Australia (see for example the Collie River in Pen & Potter 1990, and the Blackwood River in Beatty et al. 2006, 2008). Fishes of the Margaret River have previously been examined by Morgan et al. (1998) and Morgan & Beatty (2003) with the monitoring of the functioning of the two fishways on the river documented in Morgan & Beatty (2004, 2007) and Beatty & Morgan (2008). The river is known to be of conservation importance due to it housing five of the eight endemic freshwater fishes of the south-west region, as well as housing the majority (five of the six species) of the Cherax species of freshwater crayfishes found in the south-west; including the Margaret River endemic Critically Endangered Hairy Marron.
Despite this known value and considerable volume of research on the fishes in the main channel of the Margaret River, little is known on the fishes and freshwater crayfishes of the river 19s major tributaries. The aim of this study is to document the freshwater fish distribution in the major tributaries of the Margaret River (i.e. Bramley, Darch, and Yalgardup Brooks) during or close to the breeding period for the majority of the species and to provide a broad assessment and comparison of population demographics of the different species in the different tributaries. This information is required for the formulation of River Action Plans for these systems by the Cape to Cape Catchments Group
Liquid crystal director fluctuations and surface anchoring by molecular simulation
We propose a simple and reliable method to measure the liquid crystal surface
anchoring strength by molecular simulation. The method is based on the
measurement of the long-range fluctuation modes of the director in confined
geometry. As an example, molecular simulations of a liquid crystal in slab
geometry between parallel walls with homeotropic anchoring have been carried
out using the Monte Carlo technique. By studying different slab thicknesses, we
are able to calculate separately the position of the elastic boundary
condition, and the extrapolation length
Macroscopic electrostatic potentials and interactions in self-assembled molecular bilayers: the case of Newton black films
We propose a very simple but 'realistic' model of amphiphilic bilayers,simple
enough to be able to include a large number of molecules in the sample, but
nevertheless detailed enough to include molecular charge distributions,
flexible amphiphilic molecules and a reliable model of water. All these
parameters are essential in a nanoscopic scale study of intermolecular and long
range electrostatic interactions. We also propose a novel, simple and more
accurate macroscopic electrostatic field for model bilayers. This model goes
beyond the total dipole moment of the sample, which on a time average is zero
for this type of symmetrical samples, i. e., it includes higher order moments
of this macroscopic electric field. We show that by representing it with a
superposition of gaussians it can be 'analytically' integrated, and therefore
its calculation is easily implemented in a MD simulation (even in simulations
of non-symmetrical bi- or multi-layers). In this paper we test our model by
molecular dynamics simulations of Newton black films
Non-equilibrium dynamics of an active colloidal "chucker"
We report Monte Carlo simulations of the dynamics of a "chucker": a colloidal
particle which emits smaller solute particles from its surface, isotropically
and at a constant rate k_c. We find that the diffusion constant of the chucker
increases for small k_c, as recently predicted theoretically. At large k_c the
chucker diffuses more slowly due to crowding effects. We compare our simulation
results to those of a "point particle" Langevin dynamics scheme in which the
solute concentration field is calculated analytically, and in which
hydrodynamic effects can be included albeit in an approximate way. By
simulating the dragging of a chucker, we obtain an estimate of its apparent
mobility coefficient which violates the fluctuation-dissipation theorem. We
also characterise the probability density profile for a chucker which sediments
onto a surface which either repels or absorbs the solute particles, and find
that the steady state distributions are very different in the two cases. Our
simulations are inspired by the biological example of
exopolysaccharide-producing bacteria, as well as by recent experimental,
simulation and theoretical work on phoretic colloidal "swimmers".Comment: re-submission after referee's comment
On the use of internal state variables in thermoviscoplastic constitutive equations
The general theory of internal state variables are reviewed to apply it to inelastic metals in use in high temperature environments. In this process, certain constraints and clarifications will be made regarding internal state variables. It is shown that the Helmholtz free energy can be utilized to construct constitutive equations which are appropriate for metallic superalloys. Internal state variables are shown to represent locally averaged measures of dislocation arrangement, dislocation density, and intergranular fracture. The internal state variable model is demonstrated to be a suitable framework for comparison of several currently proposed models for metals and can therefore be used to exhibit history dependence, nonlinearity, and rate as well as temperature sensitivity
Surface optical vortices
It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners
Understanding fragility in supercooled Lennard-Jones mixtures. II. Potential energy surface
We numerically investigated the connection between isobaric fragility and the
properties of high-order stationary points of the potential energy surface in
different supercooled Lennard-Jones mixtures. The increase of effective
activation energies upon supercooling appears to be driven by the increase of
average potential energy barriers measured by the energy dependence of the
fraction of unstable modes. Such an increase is sharper, the more fragile is
the mixture. Correlations between fragility and other properties of high-order
stationary points, including the vibrational density of states and the
localization features of unstable modes, are also discussed.Comment: 13 pages, 13 figures, minor revisions, one figure adde
- …
