782 research outputs found

    Sequence Ontology terminology for gene regulation

    Get PDF
    The Sequence Ontology (SO) is a structured, controlled vocabulary that provides terms and definitions for genomic annotation. The Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC) initiative has gathered input from many groups of researchers, including the SO, the Gene Ontology (GO), and gene regulation experts, with the goal of curating information about how gene expression is regulated at the molecular level. Here we discuss recent updates to the SO reflecting current knowledge. We have developed more accurate human-readable terms (also known as classes), including new definitions, and relationships related to the expression of genes. New findings continue to give us insight into the biology of gene regulation, including the order of events, and participants in those events. These updates to the SO support logical reasoning with the current understanding of gene expression regulation at the molecular level

    The GOA database in 2009—an integrated Gene Ontology Annotation resource

    Get PDF
    The Gene Ontology Annotation (GOA) project at the EBI (http://www.ebi.ac.uk/goa) provides high-quality electronic and manual associations (annotations) of Gene Ontology (GO) terms to UniProt Knowledgebase (UniProtKB) entries. Annotations created by the project are collated with annotations from external databases to provide an extensive, publicly available GO annotation resource. Currently covering over 160 000 taxa, with greater than 32 million annotations, GOA remains the largest and most comprehensive open-source contributor to the GO Consortium (GOC) project. Over the last five years, the group has augmented the number and coverage of their electronic pipelines and a number of new manual annotation projects and collaborations now further enhance this resource. A range of files facilitate the download of annotations for particular species, and GO term information and associated annotations can also be viewed and downloaded from the newly developed GOA QuickGO tool (http://www.ebi.ac.uk/QuickGO), which allows users to precisely tailor their annotation set

    Regulation, sensory domains and roles of two Desulfovibrio desulfuricans ATCC27774 Crp family transcription factors, HcpR1 and HcpR2, in response to nitrosative stress

    Get PDF
    In silico analyses identified a Crp/Fnr family transcription factor (HcpR) in sulfate-reducing bacteria that controls expression of the hcp gene, which encodes the hybrid cluster protein and contributes to nitrosative stress responses. There is only one hcpR gene in the model sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, but two copies in D. desulfuricans 27774, which can use nitrate as an alternative electron acceptor to sulfate. Structures of the D. desulfuricans hcpR1, hcpR2 and hcp operons are reported. We present evidence that hcp expression is regulated by HcpR2, not by HcpR1, and that these two regulators differ in both their DNA-binding site specificity and their sensory domains. HcpR1 is predicted to be a b-type cytochrome. HcpR1 binds upstream of the hcpR1 operon and its synthesis is regulated coordinately with hcp in response to NO. In contrast, hcpR2 expression was not induced by nitrate, nitrite or NO. HcpR2 is an iron-sulfur protein that reacts with NO and O2 . We propose that HcpR1 and HcpR2 use different sensory mechanisms to regulate subsets of genes required for defense against NO-induced nitrosative stress, and that diversification of signal perception and DNA recognition by these two proteins is a product of D. desulfuricans adaptation to its particular environmental niche. This article is protected by copyright. All rights reserved

    From zebrafish heart jogging genes to mouse and human orthologs: Using Gene Ontology to investigate mammalian heart development

    Get PDF
    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'. 'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development. We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging. We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging. This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach

    The beginnings of geography teaching and research in the University of Glasgow: the impact of J.W. Gregory

    Get PDF
    J.W. Gregory arrived in Glasgow from Melbourne in 1904 to take up the post of foundation Professor of Geology in the University of Glasgow. Soon after his arrival in Glasgow he began to push for the setting up of teaching in Geography in Glasgow, which came to pass in 1909 with the appointment of a Lecturer in Geography. This lecturer was based in the Department of Geology in the University's East Quad. Gregory's active promotion of Geography in the University was matched by his extensive writing in the area, in textbooks, journal articles and popular books. His prodigious output across a wide range of subject areas is variably accepted today, with much of his geomorphological work being judged as misguided to varying degrees. His 'social science' publications - in the areas of race, migration, colonisation and economic development of Africa and Australia - espouse a viewpoint that is unacceptable in the twenty-first century. Nonetheless, that viewpoint sits squarely within the social and economic traditions of Gregory's era, and he was clearly a key 'Establishment' figure in natural and social sciences research in the first half of the twentieth century. The establishment of Geography in the University of Glasgow remains enduring testimony of J.W. Gregory's energy, dedication and foresight

    Guidelines for the functional annotation of microRNAs using the Gene Ontology

    Get PDF
    MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual)

    Security governance and the private military industry in Europe and North America

    Get PDF
    Even before Iraq the growing use of private military contractors has been widely discussed in the academic and public literature. However, the reasons for this proliferation of private military companies and its implications are frequently generalized due to a lack of suitable theoretical approaches for the analysis of private means of violence in contemporary security. As a consequence, this article contends, the analysis of the growth of the private military industry typically conflates two separate developments: the failure of some developing states to provide for their national security and the privatisation of military services in industrialized nations in Europe and North America. This article focuses on the latter and argues that the concept of security governance can be used as a theoretical framework for understanding the distinct development, problems and solutions for the governance of the private military industry in developed countries.The United States Institute of Peace and the German Academic Exchange Service

    Free induction signal from biexcitons and bound excitons

    Full text link
    A theory of the free induction signal from biexcitons and bound excitons is presented. The simultaneous existence of the exciton continuum and a bound state is shown to result in a new type of time dependence of the free induction. The optically detected signal increases in time and oscillates with increasing amplitude until damped by radiative or dephasing processes. Radiative decay is anomalously fast and can result in strong picosecond pulses. The expanding area of a coherent exciton polarization (inflating antenna), produced by the exciting pulse, is the underlying physical mechanism. The developed formalism can be applied to different biexciton transients.Comment: RevTeX, 20 p. + 2 ps fig. To appear in Phys. Rev. B1
    • …
    corecore